最終更新日:2025/12/04
(analytic geometry, projective geometry) A complex line (especially, the set of complex numbers regarded as such) endowed with a point at infinity (thus becoming a projective line); (more formally) the set of equivalence classes of ordered pairs (α, β) of complex numbers, not both zero, with respect to the equivalence relation (α, β) ≡ (λα, λβ) for all nonzero complex λ
.
音声機能が動作しない場合はこちらをご確認ください
正解を見る
complex projective line
編集履歴(0)
元となった辞書の項目
complex projective line
名詞
迂言形
(analytic
geometry,
projective
geometry)
A
complex
line
(especially,
the
set
of
complex
numbers
regarded
as
such)
endowed
with
a
point
at
infinity
(thus
becoming
a
projective
line);
(more
formally)
the
set
of
equivalence
classes
of
ordered
pairs
(α,
β)
of
complex
numbers,
not
both
zero,
with
respect
to
the
equivalence
relation
"(α,
β)
≡
(λα,
λβ)
for
all
nonzero
complex
λ".
日本語の意味
複素射影直線とは、解析幾何学や射影幾何学において、複素数全体(特に複素平面)に無限遠点を追加して得られる射影直線の意味を持つ。より厳密には、(α, β)(ただしα, βは複素数で、両方がゼロでない)の順序つき組に対し、任意の非零複素数λによる拡大((α, β) ≡ (λα, λβ))という同値関係によって定義される同値類の集合として捉えられる。
意味(1)
(analytic
geometry,
projective
geometry)
A
complex
line
(especially,
the
set
of
complex
numbers
regarded
as
such)
endowed
with
a
point
at
infinity
(thus
becoming
a
projective
line);
(more
formally)
the
set
of
equivalence
classes
of
ordered
pairs
(α,
β)
of
complex
numbers,
not
both
zero,
with
respect
to
the
equivalence
relation
"(α,
β)
≡
(λα,
λβ)
for
all
nonzero
complex
λ".
( plural )