Boolean algebra
( plural )
復習用の問題
(algebra) An algebraic structure (𝛴,∨,∧,∼,0,1) where ∨ and ∧ are idempotent binary operators, ∼ is a unary involutory operator (called complement
), and 0 and 1 are nullary operators (i.e., constants), such that (𝛴,∨,0) is a commutative monoid, (𝛴,∧,1) is a commutative monoid, ∧ and ∨ distribute with respect to each other, and such that combining two complementary elements through one binary operator yields the identity of the other binary operator. (See Boolean algebra (structure)#Axiomatics.)
Boolean algebra
In the seminar, we demonstrated that a Boolean algebra is an algebraic structure (Σ, ∨, ∧, ∼, 0, 1) in which the binary operations ∨ and ∧ are idempotent, the unary operator ∼ is an involution called complement, 0 and 1 are constants, (Σ, ∨, 0) and (Σ, ∧, 1) form commutative monoids, ∨ and ∧ distribute over each other, and combining two complementary elements with one binary operation yields the identity of the other.
In the seminar, we demonstrated that a Boolean algebra is an algebraic structure (Σ, ∨, ∧, ∼, 0, 1) in which the binary operations ∨ and ∧ are idempotent, the unary operator ∼ is an involution called complement, 0 and 1 are constants, (Σ, ∨, 0) and (Σ, ∧, 1) form commutative monoids, ∨ and ∧ distribute over each other, and combining two complementary elements with one binary operation yields the identity of the other.
英語 - 英語
- 項目の編集権限を持つユーザー - すべてのユーザー
- 項目の新規作成を審査する
- 項目の編集を審査する
- 項目の削除を審査する
- 重複の恐れのある項目名の追加を審査する
- 項目名の変更を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
- 例文の編集権限を持つユーザー - すべてのユーザー
- 例文の削除を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
- 問題の編集権限を持つユーザー - すべてのユーザー
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1