最終更新日:2025/12/08
(geometry) Any of a certain family of graphs related to Keller's conjecture, such that the vertices of the Keller graph of dimension n are the 4ⁿ elements (m₁,...,mₙ) where each m is 0, 1, 2, or 3, and two vertices are joined by an edge if they differ in at least two coordinates and differ by exactly two in at least one coordinate.
音声機能が動作しない場合はこちらをご確認ください
正解を見る
Keller graph
編集履歴(0)
元となった辞書の項目
Keller graph
名詞
(geometry)
Any
of
a
certain
family
of
graphs
related
to
Keller's
conjecture,
such
that
the
vertices
of
the
Keller
graph
of
dimension
n
are
the
4ⁿ
elements
(m₁,...,mₙ)
where
each
m
is
0,
1,
2,
or
3,
and
two
vertices
are
joined
by
an
edge
if
they
differ
in
at
least
two
coordinates
and
differ
by
exactly
two
in
at
least
one
coordinate.
日本語の意味
幾何学において、ケラーの予想に関連するグラフの族の一つ。具体的には、次元 n のケラーグラフは 4ⁿ 個の頂点から構成され、各頂点は n 個の値 (m₁, …, mₙ) を持ち、各 m は 0, 1, 2, 3 のいずれかの値をとる。また、2 つの頂点が辺で結ばれる条件は、少なくとも2つの座標において値が異なり、そのうち少なくとも1つの座標で値の差がちょうど2である場合に成立する。
意味(1)
(geometry)
Any
of
a
certain
family
of
graphs
related
to
Keller's
conjecture,
such
that
the
vertices
of
the
Keller
graph
of
dimension
n
are
the
4ⁿ
elements
(m₁,...,mₙ)
where
each
m
is
0,
1,
2,
or
3,
and
two
vertices
are
joined
by
an
edge
if
they
differ
in
at
least
two
coordinates
and
differ
by
exactly
two
in
at
least
one
coordinate.
( plural )