最終更新日:2025/12/07
(mathematics) A result on the class group of certain number fields, strengthening Ernst Kummer's theorem to the effect that the prime p divides the class number of the cyclotomic field of p-th roots of unity iff p divides the numerator of the n-th Bernoulli number Bₙ for some n, 0 < n < p − 1. The Herbrand–Ribet theorem specifies what, in particular, it means when p divides such an Bₙ.
音声機能が動作しない場合はこちらをご確認ください
正解を見る
Herbrand-Ribet theorem
編集履歴(0)
元となった辞書の項目
Herbrand-Ribet theorem
固有名詞
(mathematics)
A
result
on
the
class
group
of
certain
number
fields,
strengthening
Ernst
Kummer's
theorem
to
the
effect
that
the
prime
p
divides
the
class
number
of
the
cyclotomic
field
of
p-th
roots
of
unity
iff
p
divides
the
numerator
of
the
n-th
Bernoulli
number
Bₙ
for
some
n,
0
<
n
<
p
−
1.
The
Herbrand–Ribet
theorem
specifies
what,
in
particular,
it
means
when
p
divides
such
an
Bₙ.
日本語の意味
Herbrand-Ribet定理は、数学、特に数論において、特定の数体の類群に関する結果です。この定理はエルンスト・クンマーの定理を強化するもので、素数pについて、pがp次巡回体(p乗根を含む体)の類数を割り切る条件が、0 < n < p-1となるあるnに対してn番目のベルヌーイ数Bₙの分子がpで割り切れることと同値であることを具体的に示しています。
意味(1)
(mathematics)
A
result
on
the
class
group
of
certain
number
fields,
strengthening
Ernst
Kummer's
theorem
to
the
effect
that
the
prime
p
divides
the
class
number
of
the
cyclotomic
field
of
p-th
roots
of
unity
iff
p
divides
the
numerator
of
the
n-th
Bernoulli
number
Bₙ
for
some
n,
0
<
n
<
p
−
1.
The
Herbrand–Ribet
theorem
specifies
what,
in
particular,
it
means
when
p
divides
such
an
Bₙ.
( canonical )