最終更新日:2025/12/07
例文
復習用の問題
Researchers showed that the deep consequences of the Herbrand-Ribet theorem include precise conditions on which Bernoulli numbers cause a prime p to divide the class number of the pth cyclotomic field.
正解を見る
Researchers showed that the deep consequences of the Herbrand-Ribet theorem include precise conditions on which Bernoulli numbers cause a prime p to divide the class number of the pth cyclotomic field.
音声機能が動作しない場合はこちらをご確認ください
関連する単語
Herbrand-Ribet theorem
固有名詞
(mathematics)
A
result
on
the
class
group
of
certain
number
fields,
strengthening
Ernst
Kummer's
theorem
to
the
effect
that
the
prime
p
divides
the
class
number
of
the
cyclotomic
field
of
p-th
roots
of
unity
iff
p
divides
the
numerator
of
the
n-th
Bernoulli
number
Bₙ
for
some
n,
0
<
n
<
p
−
1.
The
Herbrand–Ribet
theorem
specifies
what,
in
particular,
it
means
when
p
divides
such
an
Bₙ.
日本語の意味
Herbrand-Ribet定理は、数学、特に数論において、特定の数体の類群に関する結果です。この定理はエルンスト・クンマーの定理を強化するもので、素数pについて、pがp次巡回体(p乗根を含む体)の類数を割り切る条件が、0 < n < p-1となるあるnに対してn番目のベルヌーイ数Bₙの分子がpで割り切れることと同値であることを具体的に示しています。
関連語
項目の編集設定
- 項目の編集権限を持つユーザー - すべてのユーザー
- 項目の新規作成を審査する
- 項目の編集を審査する
- 項目の削除を審査する
- 重複の恐れのある項目名の追加を審査する
- 項目名の変更を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
例文の編集設定
- 例文の編集権限を持つユーザー - すべてのユーザー
- 例文の削除を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
問題の編集設定
- 問題の編集権限を持つユーザー - すべてのユーザー
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
