group ring
( plural )
復習用の問題
(algebra) Given ring R with identity not equal to zero, and group G=g_1,g_2,...,g_n, the group ring RG has elements of the form a_1g_1+a_2g_2+...+a_ng_n (where a_i isin R) such that the sum of a_1g_1+a_2g_2+...+a_ng_n and b_1g_1+b_2g_2+...+b_ng_n is (a_1+b_1)g_1+(a_2+b_2)g_2+...+(a_n+b_n)g_n and the product is ∑ₖ₌₁ⁿ(∑_(g_ig_j=g_k)a_ib_j)g_k.
group ring
In abstract algebra, the group ring RG consists of formal sums a_1g_1 + a_2g_2 + ... + a_ng_n with coefficients a_i in R, where (a_1g_1+...+a_ng_n)+(b_1g_1+...+b_ng_n) = (a_1+b_1)g_1+...+(a_n+b_n)g_n and the product is given by ∑{k=1}n (∑{g_i g_j = g_k} a_i b_j) g_k.
In abstract algebra, the group ring RG consists of formal sums a_1g_1 + a_2g_2 + ... + a_ng_n with coefficients a_i in R, where (a_1g_1+...+a_ng_n)+(b_1g_1+...+b_ng_n) = (a_1+b_1)g_1+...+(a_n+b_n)g_n and the product is given by ∑{k=1}n (∑{g_i g_j = g_k} a_i b_j) g_k.
英語 - 英語
- 項目の編集権限を持つユーザー - すべてのユーザー
- 項目の新規作成を審査する
- 項目の編集を審査する
- 項目の削除を審査する
- 重複の恐れのある項目名の追加を審査する
- 項目名の変更を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
- 例文の編集権限を持つユーザー - すべてのユーザー
- 例文の削除を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
- 問題の編集権限を持つユーザー - すべてのユーザー
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1