最終更新日:2025/11/25
(algebra) Given ring R with identity not equal to zero, and group G=g_1,g_2,...,g_n, the group ring RG has elements of the form a_1g_1+a_2g_2+...+a_ng_n (where a_i isin R) such that the sum of a_1g_1+a_2g_2+...+a_ng_n and b_1g_1+b_2g_2+...+b_ng_n is (a_1+b_1)g_1+(a_2+b_2)g_2+...+(a_n+b_n)g_n and the product is ∑ₖ₌₁ⁿ(∑_(g_ig_j=g_k)a_ib_j)g_k.
音声機能が動作しない場合はこちらをご確認ください
正解を見る
group ring
編集履歴(0)
元となった辞書の項目
group ring
名詞
(algebra)
Given
ring
R
with
identity
not
equal
to
zero,
and
group
G=g_1,g_2,...,g_n,
the
group
ring
RG
has
elements
of
the
form
a_1g_1+a_2g_2+...+a_ng_n
(where
a_i
isin
R)
such
that
the
sum
of
a_1g_1+a_2g_2+...+a_ng_n
and
b_1g_1+b_2g_2+...+b_ng_n
is
(a_1+b_1)g_1+(a_2+b_2)g_2+...+(a_n+b_n)g_n
and
the
product
is
∑ₖ₌₁ⁿ(∑_(g_ig_j=g_k)a_ib_j)g_k.
日本語の意味
群環:環 R(単位元を含みゼロと異なる環)と群 G の各元を用いて、形式線形結合 a₁g₁ + a₂g₂ + … + aₙgₙ (aᵢ ∈ R)の形で構成される環。加法および乗法はそれぞれ対応する係数の加算と、群の積に従った分配法則によって定義される。
意味(1)
(algebra)
Given
ring
R
with
identity
not
equal
to
zero,
and
group
G=g_1,g_2,...,g_n,
the
group
ring
RG
has
elements
of
the
form
a_1g_1+a_2g_2+...+a_ng_n
(where
a_i
isin
R)
such
that
the
sum
of
a_1g_1+a_2g_2+...+a_ng_n
and
b_1g_1+b_2g_2+...+b_ng_n
is
(a_1+b_1)g_1+(a_2+b_2)g_2+...+(a_n+b_n)g_n
and
the
product
is
∑ₖ₌₁ⁿ(∑_(g_ig_j=g_k)a_ib_j)g_k.
( plural )