In abstract algebra, the group ring RG consists of formal sums a_1g_1 + a_2g_2 + ... + a_ng_n with coefficients a_i in R, where (a_1g_1+...+a_ng_n)+(b_1g_1+...+b_ng_n) = (a_1+b_1)g_1+...+(a_n+b_n)g_n and the product is given by ∑{k=1}n (∑{g_i g_j = g_k} a_i b_j) g_k.
In abstract algebra, the group ring RG consists of formal sums a_1g_1 + a_2g_2 + ... + a_ng_n with coefficients a_i in R, where (a_1g_1+...+a_ng_n)+(b_1g_1+...+b_ng_n) = (a_1+b_1)g_1+...+(a_n+b_n)g_n and the product is given by ∑{k=1}n (∑{g_i g_j = g_k} a_i b_j) g_k.
抽象代数学において、群環RGは係数a_iがRに属する形式和a_1g_1 + a_2g_2 + ... + a_ng_nから成り、加法は(a_1g_1+...+a_ng_n)+(b_1g_1+...+b_ng_n) = (a_1+b_1)g_1+...+(a_n+b_n)g_nであり、乗法は∑_{k=1}^n (∑_{g_i g_j = g_k} a_i b_j) g_kによって与えられます。