最終更新日:2025/12/04
(algebra) For a positive integer n, a polynomial whose roots are the primitive nᵗʰ roots of unity, so that its degree is Euler's totient function of n. That is, letting 𝜁ₙ=ei 2𝜋/n be the first primitive nᵗʰ root of unity, then 𝛷ₙ(x)=∏_( stackrel )1
音声機能が動作しない場合はこちらをご確認ください
正解を見る
cyclotomic polynomial
編集履歴(0)
元となった辞書の項目
cyclotomic polynomial
名詞
(algebra)
For
a
positive
integer
n,
a
polynomial
whose
roots
are
the
primitive
nᵗʰ
roots
of
unity,
so
that
its
degree
is
Euler's
totient
function
of
n.
That
is,
letting
𝜁ₙ=e^(i
2𝜋/n)
be
the
first
primitive
nᵗʰ
root
of
unity,
then
𝛷ₙ(x)=∏_(
stackrel
)1<m<ngcd
(n,m)=1(x-𝜁ₙᵐ)
is
the
nᵗʰ
such
polynomial.
日本語の意味
巡回多項式:正の整数 n に対して、原始的な n 次の単位根をすべて根とする多項式であり、その次数は n のオイラーのトーシェント関数(φ(n))によって定まる。
意味(1)
(algebra)
For
a
positive
integer
n,
a
polynomial
whose
roots
are
the
primitive
nᵗʰ
roots
of
unity,
so
that
its
degree
is
Euler's
totient
function
of
n.
That
is,
letting
𝜁ₙ=e^(i
2𝜋/n)
be
the
first
primitive
nᵗʰ
root
of
unity,
then
𝛷ₙ(x)=∏_(
stackrel
)1<m<ngcd
(n,m)=1(x-𝜁ₙᵐ)
is
the
nᵗʰ
such
polynomial.
( plural )