μ-completion
( plural )
復習用の問題
(mathematical analysis) A σ-algebra which is obtained as a completion
of a given σ-algebra, which includes all subsets of the given measure space which simultaneously contain a member of the given σ-algebra and are contained by a member of the given σ-algebra, as long as the contained and containing measurable sets have the same measure, in which case the subset in question is assigned a measure equal to the common measure of its contained and containing measurable sets (so the measure is also being completed, in parallel with the σ-algebra).
μ-completion
When constructing the μ-completion of the measurable space, we adjoin all subsets that lie between two measurable sets of equal measure so that the measure becomes complete as well.
When constructing the μ-completion of the measurable space, we adjoin all subsets that lie between two measurable sets of equal measure so that the measure becomes complete as well.
英語 - 英語
- 項目の編集権限を持つユーザー - すべてのユーザー
- 項目の新規作成を審査する
- 項目の編集を審査する
- 項目の削除を審査する
- 重複の恐れのある項目名の追加を審査する
- 項目名の変更を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
- 例文の編集権限を持つユーザー - すべてのユーザー
- 例文の削除を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
- 問題の編集権限を持つユーザー - すべてのユーザー
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1