natural numbers object
( plural )
復習用の問題
(category theory) An object which has a distinguished global element (which may be called z, for “zero”) and a distinguished endomorphism (which may be called s, for “successor”) such that iterated compositions of s upon z (i.e., sⁿ∘z) yields other global elements of the same object which correspond to the natural numbers (sⁿ∘z↔n). Such object has the universal property that for any other object with a distinguished global element (call it z’) and a distinguished endomorphism (call it s’), there is a unique morphism (call it φ) from the given object to the other object which maps z to z’ (𝜙∘z=z') and which commutes with s; i.e., 𝜙∘s=s'∘𝜙.
natural numbers object
In category theory, a natural numbers object is an object equipped with a distinguished global element z and a distinguished endomorphism s such that the iterated compositions sn ∘ z yield the natural numbers, and it satisfies the universal property that for any other object with a distinguished global element z' and endomorphism s', there is a unique morphism φ with φ ∘ z = z' and φ ∘ s = s' ∘ φ.
In category theory, a natural numbers object is an object equipped with a distinguished global element z and a distinguished endomorphism s such that the iterated compositions sn ∘ z yield the natural numbers, and it satisfies the universal property that for any other object with a distinguished global element z' and endomorphism s', there is a unique morphism φ with φ ∘ z = z' and φ ∘ s = s' ∘ φ.
英語 - 英語
- 項目の編集権限を持つユーザー - すべてのユーザー
- 項目の新規作成を審査する
- 項目の編集を審査する
- 項目の削除を審査する
- 重複の恐れのある項目名の追加を審査する
- 項目名の変更を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
- 例文の編集権限を持つユーザー - すべてのユーザー
- 例文の削除を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
- 問題の編集権限を持つユーザー - すべてのユーザー
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1