最終更新日:2025/12/05

In category theory, a natural numbers object is an object equipped with a distinguished global element z and a distinguished endomorphism s such that the iterated compositions sn ∘ z yield the natural numbers, and it satisfies the universal property that for any other object with a distinguished global element z' and endomorphism s', there is a unique morphism φ with φ ∘ z = z' and φ ∘ s = s' ∘ φ.

正解を見る

In category theory, a natural numbers object is an object equipped with a distinguished global element z and a distinguished endomorphism s such that the iterated compositions sn ∘ z yield the natural numbers, and it satisfies the universal property that for any other object with a distinguished global element z' and endomorphism s', there is a unique morphism φ with φ ∘ z = z' and φ ∘ s = s' ∘ φ.

音声機能が動作しない場合はこちらをご確認ください
編集履歴(0)
元となった例文

圏論において、自然数対象とは、終対象からの指定された点 z と指定された自己射 s を備え、s^n ∘ z の反復が自然数に対応し、さらに任意の他の対象に指定された点 z' と自己射 s' が与えられるときに z を z' に写し s と可換な一意の射 φ が存在するという普遍性を満たす対象である。

Sentence quizzes to help you learn to read

編集履歴(0)

ログイン / 新規登録

 

アプリをダウンロード!
DiQt

DiQt(ディクト)

無料

★★★★★★★★★★