元となった辞書の項目
Rolle's theorem
固有名詞
(calculus)
The
theorem
that
any
real-valued
differentiable
function
that
attains
equal
values
at
two
distinct
points
must
have
a
point
somewhere
between
them
where
the
first
derivative
(the
slope
of
the
tangent
line
to
the
graph
of
the
function)
is
zero.
In
mathematical
terms,
if
f:ℝ→ℝ
is
differentiable
on
(a,b)
and
f(a)=f(b)
then
∃c∈(a,b):f'(c)=0.
日本語の意味
実数値の関数が区間の両端で同一の値をとるとき、その区間内のどこかに接線の傾き(微分係数)がゼロになる点が存在するという定理。 / 数学的には、区間(a, b)で微分可能な関数fに対し、f(a)=f(b)ならば、(a, b)内にある少なくとも一つの点cでf'(c)=0となることを保証する定理である。
意味(1)
(calculus)
The
theorem
that
any
real-valued
differentiable
function
that
attains
equal
values
at
two
distinct
points
must
have
a
point
somewhere
between
them
where
the
first
derivative
(the
slope
of
the
tangent
line
to
the
graph
of
the
function)
is
zero.
In
mathematical
terms,
if
f:ℝ→ℝ
is
differentiable
on
(a,b)
and
f(a)=f(b)
then
∃c∈(a,b):f'(c)=0.