最終更新日:2025/11/22
(differential geometry) the Riemannian metric for 2-dimensional manifolds, i.e. given a surface with regular parametrization x(u,v), the first fundamental form is a set of three functions, {E, F, G}, dependent on u and v, which give information about local intrinsic curvature of the surface. These functions are given by
音声機能が動作しない場合はこちらをご確認ください
正解を見る
first fundamental form
編集履歴(0)
元となった辞書の項目
first fundamental form
名詞
不可算名詞
(differential
geometry)
the
Riemannian
metric
for
2-dimensional
manifolds,
i.e.
given
a
surface
with
regular
parametrization
x(u,v),
the
first
fundamental
form
is
a
set
of
three
functions,
{E,
F,
G},
dependent
on
u
and
v,
which
give
information
about
local
intrinsic
curvature
of
the
surface.
These
functions
are
given
by
日本語の意味
微分幾何学において、曲面の局所的な内部曲率や計量情報を与えるリーマン計量の一形態。具体的には、正則なパラメトリゼーション x(u,v) を持つ曲面に対して、3つの関数 {E, F, G} により構成され、局所的な計量(第一基本形式)として扱われる。
意味(1)
(differential
geometry)
the
Riemannian
metric
for
2-dimensional
manifolds,
i.e.
given
a
surface
with
regular
parametrization
x(u,v),
the
first
fundamental
form
is
a
set
of
three
functions,
{E,
F,
G},
dependent
on
u
and
v,
which
give
information
about
local
intrinsic
curvature
of
the
surface.
These
functions
are
given
by