最終更新日:2025/11/20
(mathematics) A hyperbolic function that is the analogue of the sine function for hyperbolic spaces, taking in a hyperbolic angle as an argument and returning the y-coordinate for the corresponding point on the unit hyperbola. It is written in symbol sinh and can be represented as: sinh (x)= tfrac 1 2(eˣ-e⁻ˣ)
音声機能が動作しない場合はこちらをご確認ください
正解を見る
hyperbolic sine
編集履歴(0)
元となった辞書の項目
hyperbolic sine
名詞
(mathematics)
A
hyperbolic
function
that
is
the
analogue
of
the
sine
function
for
hyperbolic
spaces,
taking
in
a
hyperbolic
angle
as
an
argument
and
returning
the
y-coordinate
for
the
corresponding
point
on
the
unit
hyperbola.
It
is
written
in
symbol
sinh
and
can
be
represented
as:
sinh
(x)=
tfrac
1
2(eˣ-e⁻ˣ)
日本語の意味
数学において、双曲線正弦関数(sinh)は、双曲線空間における正弦関数の類似物であり、双曲線角を入力として受け取り、対応する単位双曲線上の点のy座標を返す関数です。
意味(1)
(mathematics)
A
hyperbolic
function
that
is
the
analogue
of
the
sine
function
for
hyperbolic
spaces,
taking
in
a
hyperbolic
angle
as
an
argument
and
returning
the
y-coordinate
for
the
corresponding
point
on
the
unit
hyperbola.
It
is
written
in
symbol
sinh
and
can
be
represented
as:
sinh
(x)=
tfrac
1
2(eˣ-e⁻ˣ)
( plural )