最終更新日:2025/11/28

When considering infinite products of topological spaces, the product topology is defined so that a set is open if it is a union of basic open sets in which only finitely many coordinates are proper open subsets of the corresponding spaces.

正解を見る

When considering infinite products of topological spaces, the product topology is defined so that a set is open if it is a union of basic open sets in which only finitely many coordinates are proper open subsets of the corresponding spaces.

音声機能が動作しない場合はこちらをご確認ください
編集履歴(0)
元となった例文

位相空間の無限直積を考えるとき、直積位相は、ある集合が開であるためには、それが対応する空間のうち有限個のみが真の開集合となるような基本開集合の合併として表せるように定義される。

Sentence quizzes to help you learn to read

編集履歴(0)

ログイン / 新規登録

 

アプリをダウンロード!
DiQt

DiQt(ディクト)

無料

★★★★★★★★★★