最終更新日
:2025/12/05
Klein quadric
( plural )
復習用の問題
(mathematics) The lines of a 3-dimensional projective space, S, can be viewed as points of a 5-dimensional projective space, T. In that 5-space, the points that represent each line in S lie on a hyperbolic quadric, Q, known as the Klein quadric.
音声機能が動作しない場合はこちらをご確認ください
正解を見る
Klein quadric
When studying the correspondence between lines in projective three-space and points in projective five-space, one often examines the Klein quadric to understand their incidence relations.
正解を見る
When studying the correspondence between lines in projective three-space and points in projective five-space, one often examines the Klein quadric to understand their incidence relations.
音声機能が動作しない場合はこちらをご確認ください
英語 - 英語
項目の編集設定
- 項目の編集権限を持つユーザー - すべてのユーザー
- 項目の新規作成を審査する
- 項目の編集を審査する
- 項目の削除を審査する
- 重複の恐れのある項目名の追加を審査する
- 項目名の変更を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
例文の編集設定
- 例文の編集権限を持つユーザー - すべてのユーザー
- 例文の削除を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
問題の編集設定
- 問題の編集権限を持つユーザー - すべてのユーザー
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1