最終更新日:2025/12/30
例文
In
the
Mazur
game,
the
unit
interval
[0,1]
is
initially
divided
into
two
complementary
sets,
A
and
B.
Player
1
then
chooses
a
closed
interval
in
[0,1]
of
length
<1/2
and
greater
than
zero.
Player
2
then
chooses
an
interval
within
the
previously
chosen
interval,
of
length
<1/3
and
greater
than
zero.
Player
1
then
chooses
an
interval
within
the
previous
interval,
of
length
<1/4
and
greater
than
zero,
and
so
on.
After
infinitely
many
steps,
the
intersection
of
all
the
chosen
intervals
is
a
single
point:
if
it
falls
within
set
A,
then
player
1
wins;
if
it
falls
within
set
B,
player
2
wins.
復習用の問題
In the Mazur game, the unit interval [0,1] is initially divided into two complementary sets, A and B. Player 1 then chooses a closed interval in [0,1] of length <1/2 and greater than zero. Player 2 then chooses an interval within the previously chosen interval, of length <1/3 and greater than zero. Player 1 then chooses an interval within the previous interval, of length <1/4 and greater than zero, and so on. After infinitely many steps, the intersection of all the chosen intervals is a single point: if it falls within set A, then player 1 wins; if it falls within set B, player 2 wins.
音声機能が動作しない場合はこちらをご確認ください
項目の編集設定
- 項目の編集権限を持つユーザー - すべてのユーザー
- 項目の新規作成を審査する
- 項目の編集を審査する
- 項目の削除を審査する
- 重複の恐れのある項目名の追加を審査する
- 項目名の変更を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
例文の編集設定
- 例文の編集権限を持つユーザー - すべてのユーザー
- 例文の削除を審査する
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
問題の編集設定
- 問題の編集権限を持つユーザー - すべてのユーザー
- 審査に対する投票権限を持つユーザー - 編集者
- 決定に必要な投票数 - 1
