最終更新日:2025/12/06
Maharam's theorem shows that any complete measure space can be decomposed into non-atomic parts (copies of products of the unit interval [0,1]) and purely atomic parts with the counting measure, a fact that plays an important role in the theory of Banach spaces.
正解を見る
Maharam's theorem shows that any complete measure space can be decomposed into non-atomic parts (copies of products of the unit interval [0,1]) and purely atomic parts with the counting measure, a fact that plays an important role in the theory of Banach spaces.
音声機能が動作しない場合はこちらをご確認ください
編集履歴(0)
元となった例文
任意の完備測度空間が、単位区間[0,1]の積に相当する非原子的部分と、カウント測度を備えた純粋に原子的な部分に分解できるという定理は、バナッハ空間論において重要な役割を果たします。