最終更新日:2025/12/03
In many areas of mathematical physics, the Weyl algebra serves as the natural algebraic setting for studying linear differential operators with polynomial coefficients.
正解を見る
In many areas of mathematical physics, the Weyl algebra serves as the natural algebraic setting for studying linear differential operators with polynomial coefficients.
音声機能が動作しない場合はこちらをご確認ください
編集履歴(0)
元となった例文
数理物理学の多くの分野で、ワイル代数(1変数の多項式係数を持つ微分作用素の環、すなわち f_m(X)∂_X^m + f_{m-1}(X)∂_X^{m-1} + ⋯ + f_1(X)∂_X + f_0(X)は、多項式係数を持つ線形微分作用素を研究するための自然な代数的枠組みとして用いられる。