最終更新日:2022/12/24

F. Skof investigated an interesting asymptotic property of the additive functions (see Theorem 2.34). In fact, she proved that a function f : E₁ → E₂ is additive if and only if ‖f(x + y) − f(x) − f(y)‖ → 0 as ‖x‖ + ‖y‖ → ∞, where E₁ is a normed space and E₂ is a Banach space.

音声機能が動作しない場合はこちらをご確認ください
編集履歴(0)

Sentence quizzes to help you learn to read

編集履歴(0)

ログイン / 新規登録

 

アプリをダウンロード!
DiQt

DiQt(ディクト)

無料

★★★★★★★★★★