29,151解答

G検定模擬試験set1

(解説あり)(ア)に最もよくあてはまる選択肢を 1 つ選べ.

データが少量しかないなどの理由で,対象のタスクを学習させることが困難なときに,関連する別のタスクで学習し,その学習済みの特徴やパラメータなどを利用することで効率的に対象のタスクを学習することができる.これを(ア)という.

(オ)に最もよくあてはまる選択肢を 1 つ選べ.

機械が試行錯誤することで,取るべき最善の行動を決定する問題を扱うことができる学習方法を(ア)という.(ア)はボードゲームや自動運転,またロボットの歩行動作などに活用されている.代表的なアルゴリズムに (イ)があげられる.(ア)の課題として,主に(ウ)や(エ)などが挙げられる.理論的には無限に学習するが,実世界では全てが限られている.ロボットの場合,無限の試行を繰り返すことができず,損耗し,実験の続行が困難になる.そこで人間側がタスクを上手く切り分けてやさしいタスクからの学習をすることが期待される.また(エ)に関して,例として,2 体のロボット同士で学習を開始させようとすると,お互いに初期状態であるタスクについての何も知識がない状態だと,学習過程の不安定化が見られる.現在はこれに対応するために逆強化学習やディープラーニングの技術を適用した(オ)などが適用され始めている.

(解説あり)(ア)に最もよくあてはまる選択肢を 1 つ選べ.

物体検出とは(ア)である.一方物体セグメンテーションとは(イ)である.

(イ)に最もよくあてはまる選択肢を 1 つ選べ.

正則化とは,機械学習の学習において汎化誤差をできるだけ小さくするための手法の総称である.ディープニューラルネットワーク(DNN)の学習で一般に用いられる正則化の手法に(ア)があり,誤差関数に重みの L2 ノルムを加えることで重みの発散を抑えることができる.また,L2 ノルムの代わりに L1 ノルムを用いる L1正則化は,(イ)の一種であり,重要でないパラメータを 0 に近づけることができる. L1 正則化を回帰に利用した場合,(ウ)と呼ばれる.

(解説あり)(イ)に最もよくあてはまる選択肢を 1 つ選べ.

ディープラーニングでの学習を効率的に行うにあたって,共有データセットの整備が徐々に進められている.しかしながら,現在広く普及しているものには,いくつかの問題点が指摘されている. 第一は, (ア) の問題である.現在は公正な利用がなされているとされているが,企業が共有データセットを利用して学習したモデルを自社のプロダクトに転用して売り上げを上げようとした場合に問題はないのかという議論が巻き起こっている.他の問題として,これは日本にとっての問題であるが,多くのデータセットが (イ) であることが挙げられる.これにより,日本固有の食べ物を認識しようとすると,それが全く別の国の食べ物としてのみ認識されるという不具合が生じるに至っている.

(解説あり)(ウ)に最もよくあてはまる選択肢を 1 つ選べ.

ニューラルネットワークは高い表現力を持つ反面,過学習をしやすいという性質を持つため,それを改善させる方法が多数考案されている.例えば,学習の際に一部のノードを無効化する(ア),一部の層の出力を正規化する(イ),データの水増しをしてデータの不足を補う(ウ),パラメータのノルムにペナルティを課す(エ)などがそれに当たる.

(解説あり)(エ)に最もよくあてはまる選択肢を 1 つ選べ.

ニューラルネットワークは高い表現力を持つ反面,過学習をしやすいという性質を持つため,それを改善させる方法が多数考案されている.例えば,学習の際に一部のノードを無効化する(ア),一部の層の出力を正規化する(イ),データの水増しをしてデータの不足を補う(ウ),パラメータのノルムにペナルティを課す(エ)などがそれに当たる.

(ク)に最もよくあてはまる選択肢を 1 つ選べ.

線形モデルとは,(ア)を含む項の線形結合で,(ア)を含んだ数式の出力値は(イ)と呼ばれる.この線形結合で,特に(ア)も(イ)も一次元のデータの場合は,y = b0 + b1 * x と表される.こういったモデルを単回帰モデルと呼んだりもする.この数式において,各項の係数(例えば b0, b1)を(ウ)と呼び,このモデルを用いてテストデータを学習し,測定した実データを推定する.注意点として,(イ)が連続の値を取り扱う場合(エ)と呼ばれるが,離散の値を取り扱われる場合は(オ)と呼ばれ,それぞれ名称が異なる.ただ,実際のデータを扱うときに,(ア)が 1 次元であることはほとんどなく,2 次元以上になることが一般的である.このような場合,(ア)の次元数分だけ,係数パラメータを増やして,モデルを拡張する必要がある.このように(ア)が 2 つ以上の場合を(カ)モデルと呼び,各項の係数パラメータを(キ)という.またモデルによって出力された値と実際の測定値の誤差を(ク)という.この(ク)を用いて係数パラメータを推定する代表的なアルゴリズムに最小二乗法と最尤推定法がある.

(解説あり)最小二乗法の説明として最も適切な選択肢を 1 つ選べ.

(イ)に最もよくあてはまる選択肢を 1 つ選べ.

ディープラーニングはソフトウェアフレームワークを利用して実装するのが一般的である.多層のニューラルネットワークモデルを定義し,データを用いて学習・予測を実行するのがフレームワークの役割だが,重要なのはネットワークの記述方法とその柔軟性である.ネットワークには大きく分けて 二つの記述方法がある.一つ目は(ア)による記述方法である.これらの記述方法を採用しているソフトウェアには(イ)があげられる.この方法を用いることによって,モデルの定義がテキストで設定でき,簡単に学習を開始させることが出来るというメリットがある.一方で,ループ構造をもつような RNN など,複雑なモデルを扱う際には,モデルの定義を記述することは難しくなる傾向にある.二つ目は(ウ)による記述方法である.代表的なフレームワークとして(エ)があげられる.一度書き方を覚えてしまえば,複雑なモデルでも比較的簡単に記述することが出来るが,モデルは,それぞれのフレームワーク固有のソースコードで出来上がるため,モデルが使用しているソフトウェアに依存してしまうという問題がある.

ログイン / 新規登録

 

アプリをダウンロード!
DiQt

DiQt(ディクト)

無料

★★★★★★★★★★