29,151解答

G検定模擬試験set1 - 未解答

    (イ)に最もよくあてはまる選択肢を 1 つ選べ.

    ディープラーニングの実験に用いられるデータセットについて扱う.(ア)はアメリカの国立標準技術研究所によって提供されている手書き数字のデータベースである.また,スタンフォード大学がインターネット上から画像を集めて分類したデータセットである(イ)は,約 1400 万枚の自然画像を有しており,画像認識の様々なタスクに利用される.

    (ア)に最もよくあてはまる選択肢を 1 つ選べ.

    (ア)はディープラーニングにおける重要な課題の一つであり,学習済みのディープニューラルネットモデルを欺くように人工的に作られたサンプルのことである.サンプルに対して微小な摂動を加えることで,作為的にモデルの誤認識を引き起こすことができる.

    (ア)に最もよくあてはまる選択肢を 1 つ選べ.

    機械学習の種類を大きく分類すると教師あり学習,教師なし学習,強化学習がある.ニューラルネットワークにもそれらに対応するものがある.例えば,教師あり学習には(ア),教師なし学習には(イ),強化学習には(ウ)などがある.

    最小二乗法の説明として誤った選択肢を 1 つ選べ

    次の説明について,最も関連する事象を選択肢の中から 1 つ選べ.

    音響特徴量から音素,音素から文字列,文字列から単語列に直接変換して言語モデルを学習するアプローチ.

    (解説あり)(ア)に最もよくあてはまる選択肢を 1 つ選べ.

    ディープラーニングの活用を進めていく必要性の高まりに対して,日本国内においてはそうした先端 IT 技術に精通した人材不足が懸念されている. 例えば,経済産業省が定めた先端 IT 人材がどのような人材需給状況にあるかの推定によると,2020 年には需給ギャップが広がり人材の不足は (ア) に及ぶと言われている. こうした人材不足を解消するべく,様々な方法で AI に理解のある人材育成が試みられている.そのような試みの一つとして,MOOCs は期待を寄せられている.著名な例としては,AI 研究の第一人者で,2014 年から 2017 年にかけて Baidu の AI 研究所所長を務めた (イ) が創業した Coursera などは入門から上級まで様々なレベルの AI 講義が開かれており,多くの受講者を惹きつけるに至っている.

    (ア)に最もよくあてはまる選択肢を 1 つ選べ.

    機械学習において,重み更新に関わる単位として,(ア)と(イ)がある.(ア)は,重みが更新された回数であり,(イ)は訓練データを何回繰り返し学習したかを表す単位である.また一回の(ア)に用いるサンプル数は(ウ)と呼ばれる.

    (解説あり)(イ)に最もよくあてはまる選択肢を 1 つ選べ.

    ディープラーニングでの学習を効率的に行うにあたって,共有データセットの整備が徐々に進められている.しかしながら,現在広く普及しているものには,いくつかの問題点が指摘されている. 第一は, (ア) の問題である.現在は公正な利用がなされているとされているが,企業が共有データセットを利用して学習したモデルを自社のプロダクトに転用して売り上げを上げようとした場合に問題はないのかという議論が巻き起こっている.他の問題として,これは日本にとっての問題であるが,多くのデータセットが (イ) であることが挙げられる.これにより,日本固有の食べ物を認識しようとすると,それが全く別の国の食べ物としてのみ認識されるという不具合が生じるに至っている.

    (イ)に最もよくあてはまる選択肢を 1 つ選べ.

    1990 年代の音声認識は(ア)による,音自体を判別するための音響モデルと,(イ)による語と語のつながりを判別する言語モデルの両方でできている.しかし,ディープラーニングの登場,とりわけ(ウ)の登場により,音響特徴量から音素,文字列,更には単語列に直接変換する End to End モデルというアプローチを取ることが可能になり,人的に前処理を行わなくても解析することが可能となった.

    (解説あり)(ア)に最もよくあてはまる選択肢を 1 つ選べ.

    従来は,現在のディープラーニングのように入力から出力までの処理を一括で行うことができない情報を扱うことがあった.そうした場合,まず用意したデータをある手法を用いて加工し,それが入力値となり,別の手法を用いて処理を行いといった,ステップバイステップの学習が必要だった.しかし,ディープラーニングの登場によって,処理を複数回に分けて行う必要がなくなったこのような,ディープラーニングにおいて重要な方法論のことを(ア)と呼ぶ.

loading!!

loading
続きを表示する
再読み込み

ログイン / 新規登録

 

アプリをダウンロード!
DiQt

DiQt(ディクト)

無料

★★★★★★★★★★