29,151解答

G検定模擬試験set1

(イ)に最もよくあてはまる選択肢を 1 つ選べ.

ニューラルネットワークの学習は,損失関数(コスト関数)の最適化により行われる.そして,その損失関数は学習の目的に応じて決定する.よく使われる損失関数として,回帰問題には(ア),分類問題には(イ)がある.また分布を直接学習する際には(ウ)が用いられることもある.さらに,損失関数にパラメータの二乗ノルムを加えると(エ)となる.

(解説あり)(イ)に最もよくあてはまる選択肢を 1 つ選べ.

機械学習の分野において有名な二つの定理について扱う.(ア)は,認知できる全ての客観的な特徴に基づくと全ての対象は同程度に類似している,つまり特徴を選択しなければ表現の類似度に基づく分類は不可能であることを示している.(イ)は,全てのタスクに対して常に他よりすぐれている万能的なアルゴリズムは存在しないことを示している.

(解説あり)(ア)~(ウ)に最もよくあてはまる組み合わせを 1 つ選べ.

学習率の値は学習の進み方に大きな影響を与える.例えば,学習率が過度に(ア)いとコスト関数の高い局所的最適解から抜け出せなくなることがある.また,大域的最適解に向かって収束している場合でも,学習率が(イ)いと,収束は速いがコスト関数の最終的な値が高く,逆に(ウ)くすると収束は遅いが最終的にはより最適解に近いパラメータになるため,コスト関数は小さな値に収束する.

(解説あり)(ウ)に最もよくあてはまる選択肢を 1 つ選べ.

ディープニューラルネットワーク(DNN)の普及に貢献した一つの要素に,(ア)を克服する手法が提案されたことがある.(ア)は誤差逆伝播法において,(イ)ことによって生じるとされている.(ア)に対処するための方法として,あらかじめ良い重みの初期値を計算する(ウ)や,活性化関数に(エ)を利用する方法などがある.

(ア)に最もよくあてはまる選択肢を 1 つ選べ.

正則化とは,機械学習の学習において汎化誤差をできるだけ小さくするための手法の総称である.ディープニューラルネットワーク(DNN)の学習で一般に用いられる正則化の手法に(ア)があり,誤差関数に重みの L2 ノルムを加えることで重みの発散を抑えることができる.また,L2 ノルムの代わりに L1 ノルムを用いる L1正則化は,(イ)の一種であり,重要でないパラメータを 0 に近づけることができる. L1 正則化を回帰に利用した場合,(ウ)と呼ばれる.

(解説あり)以下の文章をよく読み,末尾の設問に答えよ.

AI の社会実装を進めていくにあたり,AI がもたらす倫理的リスクを事前に考慮しておく必要性が近年強く叫ばれている.各国政府はそれに対応すべく様々な取り組みを行っている. 米国政府の例を取ると,米国政府は 2016 年 10 月に PREPARING FOR THE FUTURE OF ARTIFICIAL INTELLIGENCE を発行し,続けさまに同年 THE NATIONAL ARTIFICIAL INTELLIGENCE RESEARCH and DEVELOPMENT STRATEGIC PLAN ,そして 2016 年 12 月に発行した ARTIFICIAL INTELLIGENCE AUTOMATION, AND THE ECONOMY などで,これから表面化するであろうリスクへの対応策を事前に協議している.

このうち,THE NATIONAL ARTIFICIAL INTELLIGENCE RESEARCH and DEVELOPMENT STRATEGIC PLANで協議された内容として最も適切なものを 1 つ選べ.

(エ)に最もよくあてはまる選択肢を 1 つ選べ.

ディープラーニングを含めて機械学習において精度の高い学習をするためには,観測データの適切な前処理が必須である.異なるスケールの特徴量を同時に扱えるようにするために,平均を 0 に分散を 1 に規格化する(ア)や,特徴量の線形結合からデータ内の分散が大きくなるような特徴量を得る(イ)などは広く利用されている.また,画像処理の分野においては,減算正規化と除算正規化の処理を行う(ウ)などが前処理として利用され,(エ)などの画像処理に特化したライブラリで行うことができる.また,自然言語処理の分野においては,文章に単語が含まれているかどうかを考えてテキストデータを数値化する(オ)や文章に含まれる単語の重要度を特徴量とする(カ)などがある.

(ウ)に最もよくあてはまる選択肢を 1 つ選べ.

ディープニューラルネットワーク(DNN)の学習の目的は(ア)を最小化することであり,この最適化のために勾配降下法が利用される.しかし,勾配降下法にはパラメータの勾配を数値的に求めると(イ)問題があり,このような問題を避けるために誤差逆伝播法が利用される.またディープラーニングには過学習の問題もある.過学習とは(ウ)は小さいにも関わらず,(エ)が小さくならないことであり,これらの問題を克服するために様々な手法の開発が進められている.

(オ)に最もよくあてはまる選択肢を 1 つ選べ.

線形モデルとは,(ア)を含む項の線形結合で,(ア)を含んだ数式の出力値は(イ)と呼ばれる.この線形結合で,特に(ア)も(イ)も一次元のデータの場合は,y = b0 + b1 * x と表される.こういったモデルを単回帰モデルと呼んだりもする.この数式において,各項の係数(例えば b0, b1)を(ウ)と呼び,このモデルを用いてテストデータを学習し,測定した実データを推定する.注意点として,(イ)が連続の値を取り扱う場合(エ)と呼ばれるが,離散の値を取り扱われる場合は(オ)と呼ばれ,それぞれ名称が異なる.ただ,実際のデータを扱うときに,(ア)が 1 次元であることはほとんどなく,2 次元以上になることが一般的である.このような場合,(ア)の次元数分だけ,係数パラメータを増やして,モデルを拡張する必要がある.このように(ア)が 2 つ以上の場合を(カ)モデルと呼び,各項の係数パラメータを(キ)という.またモデルによって出力された値と実際の測定値の誤差を(ク)という.この(ク)を用いて係数パラメータを推定する代表的なアルゴリズムに最小二乗法と最尤推定法がある.

(イ)に最もよくあてはまる選択肢を 1 つ選べ.

全ての欠損値が完全に生じている場合には,様々な手法を使ってこれに対処することができる.1 つは欠損があるサンプルをそのまま削除してしまう (ア) である.これは欠損に偏りがあった場合には,データ全体の傾向を大きく変えてしまうことになるので使用する際には欠損に特定の偏りがないかを確認して使用することが肝要である. 他の事例としては,欠損しているある特徴量と相関が強い他の特徴量が存在している場合は,(イ) という方法もある.

ログイン / 新規登録

 

アプリをダウンロード!
DiQt

DiQt(ディクト)

無料

★★★★★★★★★★