G検定模擬試験set1 - 未解答
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
現在の教師あり学習は,与えられたデータがどの分類に当てはまるのかを識別する(ア)と,様々な関連性のある過去の数値から未知の数値を予測する(イ)という二つに分類される.(ア)を用いることで,(ウ)のようなことができる.また(イ)を用いることで,(エ)のようなことができる.
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
ディープラーニングのモデルは,確定的モデルと確率的モデルに分類することができる.これらのモデルの例として,確定的モデルに(ア)や確率的モデルに(イ)がある.
(解説あり)(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
学習率の値は学習の進み方に大きな影響を与える.例えば,学習率が過度に(ア)とコスト関数の高い局所的最適解から抜け出せなくなることがある.また,大域的最適解に向かって収束している場合でも,学習率が(イ)と,収束は速いがコスト関数の最終的な値が高く,逆に(ウ)と収束は遅いが最終的にはより最適解に近いパラメータになるため,コスト関数は小さな値に収束する.
(ア)に最もよくあてはまる選択肢を 1 つ選べ.
ニューラルネットワークの学習は,損失関数(コスト関数)の最適化により行われる.そして,その損失関数は学習の目的に応じて決定する.よく使われる損失関数として,回帰問題には(ア),分類問題には(イ)がある.また分布を直接学習する際には(ウ)が用いられることもある.さらに,損失関数にパラメータの二乗ノルムを加えると(エ)となる.
(ア)に最もよくあてはまる選択肢を 1 つ選べ.
自己符号化器(Autoencoder)は,出力が入力と同じものに近づくことを目指して学習する.(ア)のアルゴリズムであり,(イ)が可能になる.このときの(ウ)が入力の特徴を抽出した表現となる.
(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
確率的勾配法はディープラーニングにおいて最もよく知られる最適化アルゴリズムであり,いくつかの改善を加えたものが広く使われている.例えば,以前に適用した勾配の方向を現在のパラメータ更新にも影響させる(ア)という手法や,勾配を 2 乗した値を蓄積し,すでに大きく更新されたパラメータほど更新量(学習率)を小さくする(イ)や,(イ)における一度更新量が飽和した重みはもう更新されないという欠点を,指数移動平均を蓄積することにより解決した(ウ)などがある.
ニューラルネットワークの学習には勾配降下法が用いられる.勾配降下法の手順を適切な順番に並べ替えたとき,3番目になるのはどれか.
A.重みとバイアスを初期化する. B.誤差を減らすように重み(バイアス)を修正する. C.最適な重みやバイアスになるまで繰り返す. D.ネットワークの出力と正解ラベルとの誤差を計算する. E.データ(ミニバッチ)をネットワークに入力し出力を得る.
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
狭い意味でのディープラーニングとは層の数が深いニューラルネットワークを用いた機械学習である.複数の層を持つ階層的ニューラルネットワークは,1980 年代には(ア)という方法がすでに提案されていたが,現在ほど多くの層を持った学習をすることはできなかった.その理由として二つの理由が挙げられる.一つ目は,出力層における誤差を入力層に向けて伝播させる間に,誤差情報が徐々に拡散し,入力層に近い層では勾配の値が小さくなって学習がうまく進まないという問題が発生したからだ.このことを(イ)という.二つ目は,層の数が多いニューラルネットワークの学習の目的関数は多くの(ウ)を持ち,適切な結合の重みの初期値の設定が難しかった.
loading!!