29,151解答

G検定模擬試験set1 - 未解答

    (ア)に最もよくあてはまる選択肢を 1 つ選べ.

    自己符号化器はニューラルネットワークによる(ア)の代表的な応用であり,出力が入力に近づくようにニューラルネットを学習させる.主に(イ)のために利用されることが多く,活性化関数に恒等写像を用いた場合の 3 層の自己符号化器は(ウ)と同様の結果を返す.自己符号化器を多層化すると,ディープニューラルネット同様に勾配消失問題が生じるため,複雑な内部表現を得ることは困難であった.この問題に対して 2006 年頃に(エ)らは,単層の自己符号化器に分割し入力層から繰り返し学習させる(オ)を積層自己符号化器に適用することで,汎用的な自己符号化器の利用を可能とした.また,自己符号化器の代表的な応用例として(カ)がある.

    (イ)に最もよくあてはまる選択肢を 1 つ選べ.

    教師なし学習の中で有名なものとして,未知の集合をいくつかの集まりに分類させる(ア)という学習方法と,正常な行為がどのようなものかを学習し,それと大きく異なるものを識別する(イ)がある.(ア)は特に(ウ)というアルゴリズムを使用して顧客の分類分けによる DM 配信やレコメンドを行うシステムなどに使用されている.(イ)は(エ)というアルゴリズムを基に,セキュリティシステムなどに使用されている.

    (解説あり)生成モデル(generative model)の一つであり,生成ネットワークと識別ネットワークの 2 つのネットワークを対抗させるように学習させることで,得られる生成モデル(generative model)の名称として最も適切なものを 1 つ選べ.

    (ウ)に最もよくあてはまる選択肢を 1 つ選べ.

    機械学習の種類を大きく分類すると教師あり学習,教師なし学習,強化学習がある.ニューラルネットワークにもそれらに対応するものがある.例えば,教師あり学習には(ア),教師なし学習には(イ),強化学習には(ウ)などがある.

    過学習とはどのような状態のことか.選択肢から最も適切なものを 1 つ選べ.

    (解説あり)(ウ)に最もよくあてはまる選択肢を 1 つ選べ.

    大規模なディープニューラルネットワーク(DNN)の学習では学習するべきパラメータ数が膨大となるため,処理の高速化が必要となる.2012 年に提案された分散並列技術である(ア)や画像処理に特化したプロセッサの(イ)は大規模なニューラルネットワークの学習を実現するために利用されてきた.また,大規模なニューラルネットワークの学習が困難となる原因の一つとして,ある層の入力がそれより下層の学習が進むにつれて変化する(ウ)がある.(ウ)を防ぐために出力値の分布の偏りを抑制する(エ)が 2015 年に提案されている.

    (解説あり)以下の文章をよく読み,末尾の設問に答えよ.

    AI の社会実装を進めていくにあたり,AI がもたらす倫理的リスクを事前に考慮しておく必要性が近年強く叫ばれている.各国政府はそれに対応すべく様々な取り組みを行っている. 米国政府の例を取ると,米国政府は 2016 年 10 月に PREPARING FOR THE FUTURE OF ARTIFICIAL INTELLIGENCE を発行し,続けさまに同年 THE NATIONAL ARTIFICIAL INTELLIGENCE RESEARCH and DEVELOPMENT STRATEGIC PLAN ,そして 2016 年 12 月に発行した ARTIFICIAL INTELLIGENCE AUTOMATION, AND THE ECONOMY などで,これから表面化するであろうリスクへの対応策を事前に協議している.

    このうち,PREPARING FOR THE FUTURE OF ARTIFICIAL INTELLIGENCE で協議された内容として最も適切なものを 1 つ選べ.

    (ア)に最もよくあてはまる選択肢を 1 つ選べ.

    画像データに対しては,前処理を施すことが多い.カラー画像を白黒画像に変換して計算量を削減する(ア)や,細かいノイズの影響を除去する(イ),画素ごとの明るさをスケーリングする(ウ)などがこれに含まれる.

    (ア)に最もよくあてはまる選択肢を 1 つ選べ.

    大きなニューラルネットワークなどの入出力をより小さなネットワークに学習させる技術として,(ア)がある.(ア)とは,すでに学習されているモデル(教師モデル)を利用して,より小さくシンプルなモデル(生徒モデル)を学習させる手法である.こうすることにより,生徒モデルを単独で学習させる場合よりも(イ)ことができる.

    (ウ)に最もよくあてはまる選択肢を 1 つ選べ.

    自己符号化器はニューラルネットワークによる(ア)の代表的な応用であり,出力が入力に近づくようにニューラルネットを学習させる.主に(イ)のために利用されることが多く,活性化関数に恒等写像を用いた場合の 3 層の自己符号化器は(ウ)と同様の結果を返す.自己符号化器を多層化すると,ディープニューラルネット同様に勾配消失問題が生じるため,複雑な内部表現を得ることは困難であった.この問題に対して 2006 年頃に(エ)らは,単層の自己符号化器に分割し入力層から繰り返し学習させる(オ)を積層自己符号化器に適用することで,汎用的な自己符号化器の利用を可能とした.また,自己符号化器の代表的な応用例として(カ)がある.

loading!!

loading
続きを表示する
再読み込み

ログイン / 新規登録

 

アプリをダウンロード!
DiQt

DiQt(ディクト)

無料

★★★★★★★★★★