G検定模擬試験set1 - 未解答
(カ)に最もよくあてはまる選択肢を 1 つ選べ.
線形モデルとは,(ア)を含む項の線形結合で,(ア)を含んだ数式の出力値は(イ)と呼ばれる.この線形結合で,特に(ア)も(イ)も一次元のデータの場合は,y = b0 + b1 * x と表される.こういったモデルを単回帰モデルと呼んだりもする.この数式において,各項の係数(例えば b0, b1)を(ウ)と呼び,このモデルを用いてテストデータを学習し,測定した実データを推定する.注意点として,(イ)が連続の値を取り扱う場合(エ)と呼ばれるが,離散の値を取り扱われる場合は(オ)と呼ばれ,それぞれ名称が異なる.ただ,実際のデータを扱うときに,(ア)が 1 次元であることはほとんどなく,2 次元以上になることが一般的である.このような場合,(ア)の次元数分だけ,係数パラメータを増やして,モデルを拡張する必要がある.このように(ア)が 2 つ以上の場合を(カ)モデルと呼び,各項の係数パラメータを(キ)という.またモデルによって出力された値と実際の測定値の誤差を(ク)という.この(ク)を用いて係数パラメータを推定する代表的なアルゴリズムに最小二乗法と最尤推定法がある.
(ア)に最もよくあてはまる選択肢を 1 つ選べ.
機械が試行錯誤することで,取るべき最善の行動を決定する問題を扱うことができる学習方法を(ア)という.(ア)はボードゲームや自動運転,またロボットの歩行動作などに活用されている.代表的なアルゴリズムに (イ)があげられる.(ア)の課題として,主に(ウ)や(エ)などが挙げられる.理論的には無限に学習するが,実世界では全てが限られている.ロボットの場合,無限の試行を繰り返すことができず,損耗し,実験の続行が困難になる.そこで人間側がタスクを上手く切り分けてやさしいタスクからの学習をすることが期待される.また(エ)に関して,例として,2 体のロボット同士で学習を開始させようとすると,お互いに初期状態であるタスクについての何も知識がない状態だと,学習過程の不安定化が見られる.現在はこれに対応するために逆強化学習やディープラーニングの技術を適用した(オ)などが適用され始めている.
(解説あり)(イ)に最もよくあてはまる選択肢を 1 つ選べ.
機械学習の分野において有名な二つの定理について扱う.(ア)は,認知できる全ての客観的な特徴に基づくと全ての対象は同程度に類似している,つまり特徴を選択しなければ表現の類似度に基づく分類は不可能であることを示している.(イ)は,全てのタスクに対して常に他よりすぐれている万能的なアルゴリズムは存在しないことを示している.
(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
現在,人工知能研究は抽象概念や知識理解に辿り着くために大きく分けて三つの路線を辿っている.この三つの路線は,とりわけある企業や大学によって研究が進められている. ・言語データによる RNN や映像データからの概念・知識理解を目指す(ア)路線 ・実世界を対象に研究を進め,知識理解を目指す(イ)路線 ・オンライン空間上でできることをターゲットにするして,知識理解を目指す(ウ)路線
(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
強化学習では,行動を学習する(ア)と(ア)が行動を加える対象である(イ)を考え,行動に応じて(イ)は(ア)に状態と(ウ)を返す.行動と状態/(ウ)の獲得を繰り返し,最も多くの(ウ)をもらえるような方策を得ることが強化学習の目的である.
(オ)に最もよくあてはまる選択肢を 1 つ選べ.
ニューラルネットワークで用いられる活性化関数について扱う.出力層の活性化関数には,回帰では(ア)が,多クラス分類では(イ)が一般的に利用されてきた.また中間層の活性化関数として,従来は(ウ)などが一般的に利用されてきた.しかし,これらの活性化関数を利用すると勾配消失問題が起きやすいという問題があったため,近年は,入力が 0 を超えていれば入力をそのまま出力に渡し,0 未満であれば出力を 0 とする(エ)や複数の線形関数の中での最大値を利用する(オ)などが利用されている.
(ア)に最もよくあてはまる選択肢を 1 つ選べ.
現在の教師あり学習は,与えられたデータがどの分類に当てはまるのかを識別する(ア)と,様々な関連性のある過去の数値から未知の数値を予測する(イ)という二つに分類される.(ア)を用いることで,(ウ)のようなことができる.また(イ)を用いることで,(エ)のようなことができる.
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
勾配降下法においてパラメータの更新量を決める(ア)の決定は重要である.例えば(ア)が小さすぎると(イ)などの課題が生じるため,(ウ)などの様々な(ア)調整手法が提案されている.
(解説あり)(エ)に最もよくあてはまる選択肢を 1 つ選べ.
ディープニューラルネットワーク(DNN)の普及に貢献した一つの要素に,(ア)を克服する手法が提案されたことがある.(ア)は誤差逆伝播法において,(イ)ことによって生じるとされている.(ア)に対処するための方法として,あらかじめ良い重みの初期値を計算する(ウ)や,活性化関数に(エ)を利用する方法などがある.
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
画像生成とは,何もない状態,もしくはある入力値に応じて目標の画像を生成する技術である.今最も利用されている画像生成手法は,GAN という生成敵対ネットワークである.特に,あるランダムな数値の入力値をもとに画像生成を行う DC(ア)やある文章から画像を生成する Attention(ア)などが有名である.このネットワークは(イ)と(ウ)から構成されており,(イ)は(エ)を騙すような画像を出力し,(ウ)は(イ)から出力された画像と本物の画像とを分類するようにそれぞれ学習する.このように学習することで,(イ)は適切な画像を出力することが可能となる.
loading!!