G検定模擬試験set1
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
機械が試行錯誤することで,取るべき最善の行動を決定する問題を扱うことができる学習方法を(ア)という.(ア)はボードゲームや自動運転,またロボットの歩行動作などに活用されている.代表的なアルゴリズムに (イ)があげられる.(ア)の課題として,主に(ウ)や(エ)などが挙げられる.理論的には無限に学習するが,実世界では全てが限られている.ロボットの場合,無限の試行を繰り返すことができず,損耗し,実験の続行が困難になる.そこで人間側がタスクを上手く切り分けてやさしいタスクからの学習をすることが期待される.また(エ)に関して,例として,2 体のロボット同士で学習を開始させようとすると,お互いに初期状態であるタスクについての何も知識がない状態だと,学習過程の不安定化が見られる.現在はこれに対応するために逆強化学習やディープラーニングの技術を適用した(オ)などが適用され始めている.
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
現在,人工知能研究は抽象概念や知識理解に辿り着くために大きく分けて三つの路線を辿っている.この三つの路線は,とりわけある企業や大学によって研究が進められている. ・言語データによる RNN や映像データからの概念・知識理解を目指す(ア)路線 ・実世界を対象に研究を進め,知識理解を目指す(イ)路線 ・オンライン空間上でできることをターゲットにするして,知識理解を目指す(ウ)路線
ニューラルネットワークの学習には勾配降下法が用いられる.勾配降下法の手順を適切な順番に並べ替えたとき,5番目になるのはどれか.
A.重みとバイアスを初期化する. B.誤差を減らすように重み(バイアス)を修正する. C.最適な重みやバイアスになるまで繰り返す. D.ネットワークの出力と正解ラベルとの誤差を計算する. E.データ(ミニバッチ)をネットワークに入力し出力を得る.
(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
畳み込みニューラルネットワークに特有の構造として,畳み込み層とプーリング層がある.これらは画像から特徴量を抽出するために用いられる.逆に特徴量(特徴マップ)から画像を生成する際には,それらと逆の操作を行う.代表的な構造として,畳込み層の逆操作である(ア)やプーリングの逆操作である(イ)がある.これらの構造を用いるタスクの例として(ウ)がある.
(エ)に最もよくあてはまる選択肢を 1 つ選べ.
教師なし学習の中で有名なものとして,未知の集合をいくつかの集まりに分類させる(ア)という学習方法と,正常な行為がどのようなものかを学習し,それと大きく異なるものを識別する(イ)がある.(ア)は特に(ウ)というアルゴリズムを使用して顧客の分類分けによる DM 配信やレコメンドを行うシステムなどに使用されている.(イ)は(エ)というアルゴリズムを基に,セキュリティシステムなどに使用されている.
(エ)に最もよくあてはまる選択肢を 1 つ選べ.
ニューラルネットワークには様々なモデルがあり,タスクによって適切な選択をする必要がある.例えば,画像を扱う際には(ア),自然言語処理などの系列データには(イ)がよく使われる.他にも次元削減には(ウ),画像生成には(エ)などが用いられる.
(エ)に最もよくあてはまる選択肢を 1 つ選べ.
畳み込みニューラルネットワークの(ア)のパラメータ数は(イ)と比較して極めて少ない.これは(ウ)によって(エ)ため,パラメータ数が減り,計算量が少なくなるためである.