G検定模擬試験set1
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
機械学習による分析を行う際,カテゴリーデータをそのまま扱うのは非常に難しい.このため,これを数値に変換して扱いやすくすることが一般的である. ドリンクのサイズ S, M, L などの順序を持つ文字列のカテゴリーデータの場合,それぞれの値に対応する数値を辞書型データで用意し,これを数値に変化する方法 (ア) を利用して変換を行うことがある. また順序を持たない名義特徴量のカテゴリーデータについては,各変数に対応したダミー変数を新たに作り出す (イ) が有用である.
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
狭い意味でのディープラーニングとは層の数が深いニューラルネットワークを用いた機械学習である.複数の層を持つ階層的ニューラルネットワークは,1980 年代には(ア)という方法がすでに提案されていたが,現在ほど多くの層を持った学習をすることはできなかった.その理由として二つの理由が挙げられる.一つ目は,出力層における誤差を入力層に向けて伝播させる間に,誤差情報が徐々に拡散し,入力層に近い層では勾配の値が小さくなって学習がうまく進まないという問題が発生したからだ.このことを(イ)という.二つ目は,層の数が多いニューラルネットワークの学習の目的関数は多くの(ウ)を持ち,適切な結合の重みの初期値の設定が難しかった.
(解説あり)(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
自動運転レベル5 に至るには,2 つのアプローチが存在している.1 つは自動運転レベル1 から徐々に運転自動化の範囲を広げていくアプローチ,もう1 つは直接レベル3以上の自動運転を目指そうとするものである.この時,前者のレベル1 から徐々に運転自動化を目指すアプローチを採っているプレイヤーは (ア) などである.他方で,後者の直接レベル3以上の運転自動化を目指すアプローチを採っているプレイヤーは (イ) である.また後者のアプローチを採る企業として著名なのは,google 社傘下の (ウ) 社である.
(エ)に当てはまらない選択肢を 1 つ選べ.
機械学習の手法は学習の枠組みに応じて主に三つに分類することができる. (ア)は入力とそれに対する出力のペアの集合を学習用データとする手法で,(イ)などが(ア)に含まれる.(ウ)は入力の集合だけから学習を行う手法であり,(エ)などが(ウ)に含まれる.最後に(オ)は,最終結果または連続した行動の結果に対して報酬を与え,報酬ができるだけ大きくなるような行動を探索する手法である.
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
ディープラーニングの活用を進めていく必要性の高まりに対して,日本国内においてはそうした先端 IT 技術に精通した人材不足が懸念されている. 例えば,経済産業省が定めた先端 IT 人材がどのような人材需給状況にあるかの推定によると,2020 年には需給ギャップが広がり人材の不足は (ア) に及ぶと言われている. こうした人材不足を解消するべく,様々な方法で AI に理解のある人材育成が試みられている.そのような試みの一つとして,MOOCs は期待を寄せられている.著名な例としては,AI 研究の第一人者で,2014 年から 2017 年にかけて Baidu の AI 研究所所長を務めた (イ) が創業した Coursera などは入門から上級まで様々なレベルの AI 講義が開かれており,多くの受講者を惹きつけるに至っている.
(エ)に最もよくあてはまる選択肢を 1 つ選べ.
線形モデルとは,(ア)を含む項の線形結合で,(ア)を含んだ数式の出力値は(イ)と呼ばれる.この線形結合で,特に(ア)も(イ)も一次元のデータの場合は,y = b0 + b1 * x と表される.こういったモデルを単回帰モデルと呼んだりもする.この数式において,各項の係数(例えば b0, b1)を(ウ)と呼び,このモデルを用いてテストデータを学習し,測定した実データを推定する.注意点として,(イ)が連続の値を取り扱う場合(エ)と呼ばれるが,離散の値を取り扱われる場合は(オ)と呼ばれ,それぞれ名称が異なる.ただ,実際のデータを扱うときに,(ア)が 1 次元であることはほとんどなく,2 次元以上になることが一般的である.このような場合,(ア)の次元数分だけ,係数パラメータを増やして,モデルを拡張する必要がある.このように(ア)が 2 つ以上の場合を(カ)モデルと呼び,各項の係数パラメータを(キ)という.またモデルによって出力された値と実際の測定値の誤差を(ク)という.この(ク)を用いて係数パラメータを推定する代表的なアルゴリズムに最小二乗法と最尤推定法がある.
(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
狭い意味でのディープラーニングとは層の数が深いニューラルネットワークを用いた機械学習である.複数の層を持つ階層的ニューラルネットワークは,1980 年代には(ア)という方法がすでに提案されていたが,現在ほど多くの層を持った学習をすることはできなかった.その理由として二つの理由が挙げられる.一つ目は,出力層における誤差を入力層に向けて伝播させる間に,誤差情報が徐々に拡散し,入力層に近い層では勾配の値が小さくなって学習がうまく進まないという問題が発生したからだ.このことを(イ)という.二つ目は,層の数が多いニューラルネットワークの学習の目的関数は多くの(ウ)を持ち,適切な結合の重みの初期値の設定が難しかった.
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
自己符号化器はニューラルネットワークによる(ア)の代表的な応用であり,出力が入力に近づくようにニューラルネットを学習させる.主に(イ)のために利用されることが多く,活性化関数に恒等写像を用いた場合の 3 層の自己符号化器は(ウ)と同様の結果を返す.自己符号化器を多層化すると,ディープニューラルネット同様に勾配消失問題が生じるため,複雑な内部表現を得ることは困難であった.この問題に対して 2006 年頃に(エ)らは,単層の自己符号化器に分割し入力層から繰り返し学習させる(オ)を積層自己符号化器に適用することで,汎用的な自己符号化器の利用を可能とした.また,自己符号化器の代表的な応用例として(カ)がある.
(ア)に最もよくあてはまる選択肢を 1 つ選べ.
畳み込みニューラルネットワークに特有の構造として,畳み込み層とプーリング層がある.これらは画像から特徴量を抽出するために用いられる.逆に特徴量(特徴マップ)から画像を生成する際には,それらと逆の操作を行う.代表的な構造として,畳込み層の逆操作である(ア)やプーリングの逆操作である(イ)がある.これらの構造を用いるタスクの例として(ウ)がある.