29,151解答

G検定模擬試験set1

(解説あり)次の説明について,最も関連する事象を選択肢の中から 1 つ選べ.

対象とする物体とその周囲の背景を境界まで切り分けるようなタスクを行うもの.

(ア)に当てはまらない選択肢を 1 つ選べ.

ディープラーニングのモデルは,確定的モデルと確率的モデルに分類することができる.これらのモデルの例として,確定的モデルに(ア)や確率的モデルに(イ)がある.

(ア)に最もよくあてはまる選択肢を 1 つ選べ.

現在の教師あり学習は,与えられたデータがどの分類に当てはまるのかを識別する(ア)と,様々な関連性のある過去の数値から未知の数値を予測する(イ)という二つに分類される.(ア)を用いることで,(ウ)のようなことができる.また(イ)を用いることで,(エ)のようなことができる.

過学習とはどのような状態のことか.選択肢から最も適切なものを 1 つ選べ.

(イ)に最もよくあてはまる選択肢を 1 つ選べ.

画像キャプションとは,ある画像からそこに写っているものの説明を生成する,画像処理と自然言語処理の融合分野である.キャプションは,対象となる画像を(ア)に入力し,そこから得られた特徴を(イ)に入力することで生成することが可能である.

(イ)に最もよくあてはまる選択肢を 1 つ選べ.

AI 研究の進展に伴い,実業家(ア)が提唱したシンギュラリティ(イ)という概念は議論を呼び,これが近い未来に到来するのか否かという議論が巻き起こり,様々な有識者の間でも大きく主張が分かれている.

(カ)に最もよくあてはまる選択肢を 1 つ選べ.

自己符号化器はニューラルネットワークによる(ア)の代表的な応用であり,出力が入力に近づくようにニューラルネットを学習させる.主に(イ)のために利用されることが多く,活性化関数に恒等写像を用いた場合の 3 層の自己符号化器は(ウ)と同様の結果を返す.自己符号化器を多層化すると,ディープニューラルネット同様に勾配消失問題が生じるため,複雑な内部表現を得ることは困難であった.この問題に対して 2006 年頃に(エ)らは,単層の自己符号化器に分割し入力層から繰り返し学習させる(オ)を積層自己符号化器に適用することで,汎用的な自己符号化器の利用を可能とした.また,自己符号化器の代表的な応用例として(カ)がある.

(ウ)に最もよくあてはまる選択肢を 1 つ選べ.

教師なし学習の中で有名なものとして,未知の集合をいくつかの集まりに分類させる(ア)という学習方法と,正常な行為がどのようなものかを学習し,それと大きく異なるものを識別する(イ)がある.(ア)は特に(ウ)というアルゴリズムを使用して顧客の分類分けによる DM 配信やレコメンドを行うシステムなどに使用されている.(イ)は(エ)というアルゴリズムを基に,セキュリティシステムなどに使用されている.

(ア)に最もよくあてはまる選択肢を 1 つ選べ.

現在,人工知能研究は抽象概念や知識理解に辿り着くために大きく分けて三つの路線を辿っている.この三つの路線は,とりわけある企業や大学によって研究が進められている. ・言語データによる RNN や映像データからの概念・知識理解を目指す(ア)路線 ・実世界を対象に研究を進め,知識理解を目指す(イ)路線 ・オンライン空間上でできることをターゲットにするして,知識理解を目指す(ウ)路線

(エ)に最もよくあてはまる選択肢を 1 つ選べ.

自己符号化器はニューラルネットワークによる(ア)の代表的な応用であり,出力が入力に近づくようにニューラルネットを学習させる.主に(イ)のために利用されることが多く,活性化関数に恒等写像を用いた場合の 3 層の自己符号化器は(ウ)と同様の結果を返す.自己符号化器を多層化すると,ディープニューラルネット同様に勾配消失問題が生じるため,複雑な内部表現を得ることは困難であった.この問題に対して 2006 年頃に(エ)らは,単層の自己符号化器に分割し入力層から繰り返し学習させる(オ)を積層自己符号化器に適用することで,汎用的な自己符号化器の利用を可能とした.また,自己符号化器の代表的な応用例として(カ)がある.

ログイン / 新規登録

 

アプリをダウンロード!
DiQt

DiQt(ディクト)

無料

★★★★★★★★★★