G検定模擬試験set1
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
1990 年代の音声認識は(ア)による,音自体を判別するための音響モデルと,(イ)による語と語のつながりを判別する言語モデルの両方でできている.しかし,ディープラーニングの登場,とりわけ(ウ)の登場により,音響特徴量から音素,文字列,更には単語列に直接変換する End to End モデルというアプローチを取ることが可能になり,人的に前処理を行わなくても解析することが可能となった.
(エ)に最もよくあてはまる選択肢を 1 つ選べ.
ディープラーニングの技術を利用したシステムを開発する際,複雑な処理が比較的簡潔に記述できることから,既存のフレームワークを利用することも多い.ディープラーニングのフレームワークは複数あり,google 社提供の(ア)や(ア)のラッパーとして機能する(イ),国内企業である PreferredNetworks 社で開発された(ウ)などがある.また,(エ)は(ウ)と同じ Define-by-Run 方式を採用している.
(解説あり)(イ)に最もよくあてはまる選択肢を 1 つ選べ.
ニューラルネットワークは高い表現力を持つ反面,過学習をしやすいという性質を持つため,それを改善させる方法が多数考案されている.例えば,学習の際に一部のノードを無効化する(ア),一部の層の出力を正規化する(イ),データの水増しをしてデータの不足を補う(ウ),パラメータのノルムにペナルティを課す(エ)などがそれに当たる.
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
確率的勾配法はディープラーニングにおいて最もよく知られる最適化アルゴリズムであり,いくつかの改善を加えたものが広く使われている.例えば,以前に適用した勾配の方向を現在のパラメータ更新にも影響させる(ア)という手法や,勾配を 2 乗した値を蓄積し,すでに大きく更新されたパラメータほど更新量(学習率)を小さくする(イ)や,(イ)における一度更新量が飽和した重みはもう更新されないという欠点を,指数移動平均を蓄積することにより解決した(ウ)などがある.
(解説あり)(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
学習率の値は学習の進み方に大きな影響を与える.例えば,学習率が過度に(ア)とコスト関数の高い局所的最適解から抜け出せなくなることがある.また,大域的最適解に向かって収束している場合でも,学習率が(イ)と,収束は速いがコスト関数の最終的な値が高く,逆に(ウ)と収束は遅いが最終的にはより最適解に近いパラメータになるため,コスト関数は小さな値に収束する.
(解説あり)次の説明について,最も関連する事象を選択肢の中から 1 つ選べ.
画像内に表示されている女性を認識し,「青い服を着てスマートフォンをいじっている」などのようにその対象が何をしているかを表示させることができるようになりつつある.
(ア)に最もよくあてはまる選択肢を 1 つ選べ.
勾配降下法においてパラメータの更新量を決める(ア)の決定は重要である.例えば(ア)が小さすぎると(イ)などの課題が生じるため,(ウ)などの様々な(ア)調整手法が提案されている.
人工知能が進化するにつれ,人々の生活が格段に豊かになることが期待される一方で,悪用や乱用で公共の利益を損なう可能性も否定できない.人工知能という高度な専門的職業に従事するものとして,その社会における責任を自覚し,社会と対話をしていく行動が必要となる.一般社団法人人工知能学会は,9 つの指針を定めた.選択肢から,この指針に含まれるものを 1 つ選べ.
(解説あり)次の説明について,最も関連する事象を選択肢の中から 1 つ選べ.
層を沢山重ねた深い層であってもうまく学習ができるように出力を入力と入力からの差分の和としてモデリングしたネットワークの枠組み ResNet が提案され高い精度の識別性能を誇っている.