G検定模擬試験set1
(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
機械学習において,重み更新に関わる単位として,(ア)と(イ)がある.(ア)は,重みが更新された回数であり,(イ)は訓練データを何回繰り返し学習したかを表す単位である.また一回の(ア)に用いるサンプル数は(ウ)と呼ばれる.
(ウ)に最もよくあてはまる選択肢を 1 つ選べ.
機械学習の手法は学習の枠組みに応じて主に三つに分類することができる. (ア)は入力とそれに対する出力のペアの集合を学習用データとする手法で,(イ)などが(ア)に含まれる.(ウ)は入力の集合だけから学習を行う手法であり,(エ)などが(ウ)に含まれる.最後に(オ)は,最終結果または連続した行動の結果に対して報酬を与え,報酬ができるだけ大きくなるような行動を探索する手法である.
(解説あり)昨今,ディープラーニングを活用した音声認識技術,音声生成技術の向上に伴い,スマートスピーカーが普及しつつある.下記の選択肢のうち,スマートスピーカーの音声アシスタントソフトウェアの名称とその提供元の組み合わせとして正しいものを選択肢から 1 つ選べ.
(ア)に最もよくあてはまる選択肢を 1 つ選べ.
大きなニューラルネットワークなどの入出力をより小さなネットワークに学習させる技術として,(ア)がある.(ア)とは,すでに学習されているモデル(教師モデル)を利用して,より小さくシンプルなモデル(生徒モデル)を学習させる手法である.こうすることにより,生徒モデルを単独で学習させる場合よりも(イ)ことができる.
(エ)に最もよくあてはまる選択肢を 1 つ選べ.
現在の教師あり学習は,与えられたデータがどの分類に当てはまるのかを識別する(ア)と,様々な関連性のある過去の数値から未知の数値を予測する(イ)という二つに分類される.(ア)を用いることで,(ウ)のようなことができる.また(イ)を用いることで,(エ)のようなことができる.
(ア)に最もよくあてはまる選択肢を 1 つ選べ.
既存の学習済みニューラルネットワークモデルを活用する手法に(ア)と(イ)がある.(ア)では,学習済みモデルに対して新たに別の課題を学習させることで,少量のデータセットかつ少ない計算量で高い性能のモデルを得ることができる.また,(イ)は,学習済みの大規模モデルの入力と出力を小規模なモデルの教師データとして利用することで,少ない計算資源で従来のモデルと同程度の性能を実現することが可能となる.
(ア)に最もよくあてはまる選択肢を 1 つ選べ.
活性化関数とは,ニューロンの出力に何らかの非線形な変数を加える関数である.単純パーセプトロンの出力層では(ア)が用いられ,ニューラルネットワークの中間層では,はじめ(イ)などの正規化の機能を持つ関数が好まれた.しかし現在では,誤差逆伝播で勾配が消失しやすいという問題から,中間層では勾配消失問題の影響を抑えられ,かつ簡単な(ウ)などが用いられている.また,出力層では出力の総和が 1 になるため確率的な解釈が可能になる(エ)がよく用いられる.
(ア)に最もよくあてはまる選択肢を 1 つ選べ.
ニューラルネットワークには様々なモデルがあり,タスクによって適切な選択をする必要がある.例えば,画像を扱う際には(ア),自然言語処理などの系列データには(イ)がよく使われる.他にも次元削減には(ウ),画像生成には(エ)などが用いられる.
(イ)に最もよくあてはまる選択肢を 1 つ選べ.
教師なし学習の中で有名なものとして,未知の集合をいくつかの集まりに分類させる(ア)という学習方法と,正常な行為がどのようなものかを学習し,それと大きく異なるものを識別する(イ)がある.(ア)は特に(ウ)というアルゴリズムを使用して顧客の分類分けによる DM 配信やレコメンドを行うシステムなどに使用されている.(イ)は(エ)というアルゴリズムを基に,セキュリティシステムなどに使用されている.