Last Updated :2025/11/25

group ring

Noun
Japanese Meaning
群環:環 R(単位元を含みゼロと異なる環)と群 G の各元を用いて、形式線形結合 a₁g₁ + a₂g₂ + … + aₙgₙ (aᵢ ∈ R)の形で構成される環。加法および乗法はそれぞれ対応する係数の加算と、群の積に従った分配法則によって定義される。
What is this buttons?

抽象代数学において、群環RGは係数a_iがRに属する形式和a_1g_1 + a_2g_2 + ... + a_ng_nから成り、加法は(a_1g_1+...+a_ng_n)+(b_1g_1+...+b_ng_n) = (a_1+b_1)g_1+...+(a_n+b_n)g_nであり、乗法は∑_{k=1}^n (∑_{g_i g_j = g_k} a_i b_j) g_kによって与えられます。

plural

Quizzes for review

(algebra) Given ring R with identity not equal to zero, and group G=g_1,g_2,...,g_n, the group ring RG has elements of the form a_1g_1+a_2g_2+...+a_ng_n (where a_i isin R) such that the sum of a_1g_1+a_2g_2+...+a_ng_n and b_1g_1+b_2g_2+...+b_ng_n is (a_1+b_1)g_1+(a_2+b_2)g_2+...+(a_n+b_n)g_n and the product is ∑ₖ₌₁ⁿ(∑_(g_ig_j=g_k)a_ib_j)g_k.

音声機能が動作しない場合はこちらをご確認ください
See correct answer

group ring

In abstract algebra, the group ring RG consists of formal sums a_1g_1 + a_2g_2 + ... + a_ng_n with coefficients a_i in R, where (a_1g_1+...+a_ng_n)+(b_1g_1+...+b_ng_n) = (a_1+b_1)g_1+...+(a_n+b_n)g_n and the product is given by ∑{k=1}n (∑{g_i g_j = g_k} a_i b_j) g_k.

See correct answer

In abstract algebra, the group ring RG consists of formal sums a_1g_1 + a_2g_2 + ... + a_ng_n with coefficients a_i in R, where (a_1g_1+...+a_ng_n)+(b_1g_1+...+b_ng_n) = (a_1+b_1)g_1+...+(a_n+b_n)g_n and the product is given by ∑{k=1}n (∑{g_i g_j = g_k} a_i b_j) g_k.

音声機能が動作しない場合はこちらをご確認ください

English - English

Word Edit Setting
  • Users who have edit permission for words - All Users
  • Screen new word creation
  • Screen word edits
  • Screen word deletion
  • Screen the creation of new headword that may be duplicates
  • Screen changing entry name
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Sentence Edit Setting
  • Users who have edit permission for sentences - All Users
  • Screen sentence deletion
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Quiz Edit Setting
  • Users who have edit permission for quizzes - All Users
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Editing Guideline

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★