抽象代数学において、群環RGは係数a_iがRに属する形式和a_1g_1 + a_2g_2 + ... + a_ng_nから成り、加法は(a_1g_1+...+a_ng_n)+(b_1g_1+...+b_ng_n) = (a_1+b_1)g_1+...+(a_n+b_n)g_nであり、乗法は∑_{k=1}^n (∑_{g_i g_j = g_k} a_i b_j) g_kによって与えられます。
Quizzes for review
In abstract algebra, the group ring RG consists of formal sums a_1g_1 + a_2g_2 + ... + a_ng_n with coefficients a_i in R, where (a_1g_1+...+a_ng_n)+(b_1g_1+...+b_ng_n) = (a_1+b_1)g_1+...+(a_n+b_n)g_n and the product is given by ∑{k=1}n (∑{g_i g_j = g_k} a_i b_j) g_k.
In abstract algebra, the group ring RG consists of formal sums a_1g_1 + a_2g_2 + ... + a_ng_n with coefficients a_i in R, where (a_1g_1+...+a_ng_n)+(b_1g_1+...+b_ng_n) = (a_1+b_1)g_1+...+(a_n+b_n)g_n and the product is given by ∑{k=1}n (∑{g_i g_j = g_k} a_i b_j) g_k.
Related words
group ring
- Users who have edit permission for words - All Users
- Screen new word creation
- Screen word edits
- Screen word deletion
- Screen the creation of new headword that may be duplicates
- Screen changing entry name
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1
- Users who have edit permission for sentences - All Users
- Screen sentence deletion
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1
- Users who have edit permission for quizzes - All Users
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1
