Last Updated :2025/11/22

first fundamental form

Noun
uncountable
Japanese Meaning
微分幾何学において、曲面の局所的な内部曲率や計量情報を与えるリーマン計量の一形態。具体的には、正則なパラメトリゼーション x(u,v) を持つ曲面に対して、3つの関数 {E, F, G} により構成され、局所的な計量(第一基本形式)として扱われる。
What is this buttons?

微分幾何学では、正則なパラメータ表示 x(u,v) を持つ曲面の第一基本形式(曲面のリーマン計量)は、局所的な内的曲率を決定する E(u,v)、F(u,v)、G(u,v) の三つの関数によって与えられます。

Quizzes for review

(differential geometry) the Riemannian metric for 2-dimensional manifolds, i.e. given a surface with regular parametrization x(u,v), the first fundamental form is a set of three functions, {E, F, G}, dependent on u and v, which give information about local intrinsic curvature of the surface. These functions are given by

音声機能が動作しない場合はこちらをご確認ください
See correct answer

first fundamental form

In differential geometry, the first fundamental form of a surface with a regular parametrization x(u,v) is the Riemannian metric given by three functions E(u,v), F(u,v), and G(u,v) that determine the surface's local intrinsic curvature.

See correct answer

In differential geometry, the first fundamental form of a surface with a regular parametrization x(u,v) is the Riemannian metric given by three functions E(u,v), F(u,v), and G(u,v) that determine the surface's local intrinsic curvature.

音声機能が動作しない場合はこちらをご確認ください

English - English

Word Edit Setting
  • Users who have edit permission for words - All Users
  • Screen new word creation
  • Screen word edits
  • Screen word deletion
  • Screen the creation of new headword that may be duplicates
  • Screen changing entry name
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Sentence Edit Setting
  • Users who have edit permission for sentences - All Users
  • Screen sentence deletion
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Quiz Edit Setting
  • Users who have edit permission for quizzes - All Users
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Editing Guideline

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★