Last Updated:2025/11/28
Sentence

任意の非ゼロのアイゼンシュタイン整数(a + bω の形で、a と b は整数、ω は ω^3 = 1 かつ 1 + ω + ω^2 = 0 を満たす)が単位と順序を除いて一意に素因数分解できることを示すのは、代数的整数論の基本的な結果である。

Quizzes for review

Proving that every nonzero Eisenstein integer has a unique factorization up to units and order is a fundamental result in algebraic number theory.

See correct answer

Proving that every nonzero Eisenstein integer has a unique factorization up to units and order is a fundamental result in algebraic number theory.

音声機能が動作しない場合はこちらをご確認ください

Related words

Eisenstein integer

Noun
Japanese Meaning
aとbが整数で、a+bωの形をとる複素数。ここでωはω³=1かつ1+ω+ω²=0を満たす複素数で、この形の数はユークリッド整域ℤ[ω]の元である。
What is this buttons?

任意の非ゼロのアイゼンシュタイン整数(a + bω の形で、a と b は整数、ω は ω^3 = 1 かつ 1 + ω + ω^2 = 0 を満たす)が単位と順序を除いて一意に素因数分解できることを示すのは、代数的整数論の基本的な結果である。

Related Words

plural

English - English

Word Edit Setting
  • Users who have edit permission for words - All Users
  • Screen new word creation
  • Screen word edits
  • Screen word deletion
  • Screen the creation of new headword that may be duplicates
  • Screen changing entry name
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Sentence Edit Setting
  • Users who have edit permission for sentences - All Users
  • Screen sentence deletion
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Quiz Edit Setting
  • Users who have edit permission for quizzes - All Users
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Editing Guideline

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★