Last Updated:2025/11/28

Proving that every nonzero Eisenstein integer has a unique factorization up to units and order is a fundamental result in algebraic number theory.

See correct answer

Proving that every nonzero Eisenstein integer has a unique factorization up to units and order is a fundamental result in algebraic number theory.

音声機能が動作しない場合はこちらをご確認ください
Edit Histories(0)
Source Sentence

任意の非ゼロのアイゼンシュタイン整数(a + bω の形で、a と b は整数、ω は ω^3 = 1 かつ 1 + ω + ω^2 = 0 を満たす)が単位と順序を除いて一意に素因数分解できることを示すのは、代数的整数論の基本的な結果である。

Sentence quizzes to help you learn to read

Edit Histories(0)

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★