Last Updated:2025/11/22
Sentence

連分数 1 + 1/(2 + 1/3) を有限項で打ち切って得られる有理数は 7/5 です。

Quizzes for review

The convergent of the continued fraction 1 + 1/(2 + 1/3) is 7/5.

See correct answer

The convergent of the continued fraction 1 + 1/(2 + 1/3) is 7/5.

音声機能が動作しない場合はこちらをご確認ください

Related words

convergent

Noun
Japanese Meaning
有限項までの連分数展開を打ち切ったときに得られる有理数。 / 連分数による中間収束値(中間収束分数)。
What is this buttons?

連分数 1 + 1/(2 + 1/3) を有限項で打ち切って得られる有理数は 7/5 です。

Related Words

plural

English - English

Word Edit Setting
  • Users who have edit permission for words - All Users
  • Screen new word creation
  • Screen word edits
  • Screen word deletion
  • Screen the creation of new headword that may be duplicates
  • Screen changing entry name
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Sentence Edit Setting
  • Users who have edit permission for sentences - All Users
  • Screen sentence deletion
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Quiz Edit Setting
  • Users who have edit permission for quizzes - All Users
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Editing Guideline

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★