Last Updated:2025/11/22

The convergent of the continued fraction 1 + 1/(2 + 1/3) is 7/5.

See correct answer

The convergent of the continued fraction 1 + 1/(2 + 1/3) is 7/5.

音声機能が動作しない場合はこちらをご確認ください
Edit Histories(0)
Source Sentence

連分数 1 + 1/(2 + 1/3) を有限項で打ち切って得られる有理数は 7/5 です。

Sentence quizzes to help you learn to read

Edit Histories(0)

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★