Last Updated:2025/11/21
Sentence

関数が連続であることを証明するには、像の任意の開集合の逆像が位相空間(X は集合で τ は位相である順序対 (X, τ))において開集合であることを示せば十分である。

Quizzes for review

To prove that a function is continuous, it suffices to show that the preimage of every open set in the codomain is open in the topological space.

See correct answer

To prove that a function is continuous, it suffices to show that the preimage of every open set in the codomain is open in the topological space.

音声機能が動作しない場合はこちらをご確認ください

Related words

topological space

Noun
formal broadly
Japanese Meaning
位相空間:集合 X と、その上で定められる位相 τ(X の部分集合の集まりで、特定の公理―例えば、X と空集合を含み、任意の合併及び有限個の交わりが位相に含まれる―を満たす)が定める順序対のこと。
What is this buttons?

関数が連続であることを証明するには、像の任意の開集合の逆像が位相空間(X は集合で τ は位相である順序対 (X, τ))において開集合であることを示せば十分である。

Related Words

plural

English - English

Word Edit Setting
  • Users who have edit permission for words - All Users
  • Screen new word creation
  • Screen word edits
  • Screen word deletion
  • Screen the creation of new headword that may be duplicates
  • Screen changing entry name
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Sentence Edit Setting
  • Users who have edit permission for sentences - All Users
  • Screen sentence deletion
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Quiz Edit Setting
  • Users who have edit permission for quizzes - All Users
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Editing Guideline

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★