Last Updated:2025/11/21

To prove that a function is continuous, it suffices to show that the preimage of every open set in the codomain is open in the topological space.

See correct answer

To prove that a function is continuous, it suffices to show that the preimage of every open set in the codomain is open in the topological space.

音声機能が動作しない場合はこちらをご確認ください
Edit Histories(0)
Source Sentence

関数が連続であることを証明するには、像の任意の開集合の逆像が位相空間(X は集合で τ は位相である順序対 (X, τ))において開集合であることを示せば十分である。

Sentence quizzes to help you learn to read

Edit Histories(0)

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★