Last Updated:2025/11/21
Sentence

チェビシェフの不等式は、分散が有限の任意の分布について、確率変数が平均からk標準偏差以上離れる確率は高々1/k^2であることを示します。

Quizzes for review

Chebyshev's inequality shows that, for any distribution with finite variance, the probability that a random variable lies at least k standard deviations from the mean is at most 1/k2.

See correct answer

Chebyshev's inequality shows that, for any distribution with finite variance, the probability that a random variable lies at least k standard deviations from the mean is at most 1/k2.

音声機能が動作しない場合はこちらをご確認ください

Related words

Chebyshev's inequality

Proper noun
Japanese Meaning
有限分散を持つ任意のデータサンプルにおいて、平均μからk倍以上の標準偏差σ離れた位置にある任意の確率変数Xの出現確率が、1/k²以下となることを保証する統計学の定理。
What is this buttons?

チェビシェフの不等式は、分散が有限の任意の分布について、確率変数が平均からk標準偏差以上離れる確率は高々1/k^2であることを示します。

English - English

Word Edit Setting
  • Users who have edit permission for words - All Users
  • Screen new word creation
  • Screen word edits
  • Screen word deletion
  • Screen the creation of new headword that may be duplicates
  • Screen changing entry name
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Sentence Edit Setting
  • Users who have edit permission for sentences - All Users
  • Screen sentence deletion
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Quiz Edit Setting
  • Users who have edit permission for quizzes - All Users
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Editing Guideline

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★