Last Updated:2025/11/21

Chebyshev's inequality shows that, for any distribution with finite variance, the probability that a random variable lies at least k standard deviations from the mean is at most 1/k2.

See correct answer

Chebyshev's inequality shows that, for any distribution with finite variance, the probability that a random variable lies at least k standard deviations from the mean is at most 1/k2.

音声機能が動作しない場合はこちらをご確認ください
Edit Histories(0)
Source Sentence

チェビシェフの不等式は、分散が有限の任意の分布について、確率変数が平均からk標準偏差以上離れる確率は高々1/k^2であることを示します。

Sentence quizzes to help you learn to read

Edit Histories(0)

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★