Quizzes for review

A primitive element of a Hopf algebra is an element h∈H such that 𝛥h=1⊗h+h⊗1. It is easily seen that the bracket [x,y]:=xy-yx of two primitive elements is again a primitive element. It follows that primitive elements form a Lie algebra. For H=U(g) any element of g is primitive and in fact using the Poincaré-Birkhoff-Win theorem, one can show that the set of primitive elements of U(g) coincides with the Lie algebra g.

音声機能が動作しない場合はこちらをご確認ください

English - English

Word Edit Setting
  • Users who have edit permission for words - All Users
  • Screen new word creation
  • Screen word edits
  • Screen word deletion
  • Screen the creation of new headword that may be duplicates
  • Screen changing entry name
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Sentence Edit Setting
  • Users who have edit permission for sentences - All Users
  • Screen sentence deletion
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Quiz Edit Setting
  • Users who have edit permission for quizzes - All Users
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Editing Guideline

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★