Last Updated:2022/12/24

We also show that these groups have a finite index subgroup satisfying the strongest Tits alternative, which means that every subgroup either surjects a non abelian free group or is torsion free abelian.

音声機能が動作しない場合はこちらをご確認ください
Edit Histories(0)

Sentence quizzes to help you learn to read

Edit Histories(0)

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★