ramified forcing
Quizzes for review
(set theory) The original form of forcing, starting with a model M of set theory in which the axiom of constructibility, V = L, holds, and then building up a larger model M[G] of Zermelo-Fraenkel set theory by adding a generic subset G of a partially ordered set to M, imitating Kurt Gödel's constructible hierarchy.
ramified forcing
In several early constructions, ramified forcing was used to extend the constructible model M into a larger model M[G] that satisfied additional combinatorial properties.
In several early constructions, ramified forcing was used to extend the constructible model M into a larger model M[G] that satisfied additional combinatorial properties.
English - English
- Users who have edit permission for words - All Users
- Screen new word creation
- Screen word edits
- Screen word deletion
- Screen the creation of new headword that may be duplicates
- Screen changing entry name
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1
- Users who have edit permission for sentences - All Users
- Screen sentence deletion
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1
- Users who have edit permission for quizzes - All Users
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1