Neyman-Pearson lemma
Quizzes for review
(statistics) A lemma stating that when performing a hypothesis test between two point hypotheses H₀: θ = θ₀ and H₁: θ = θ₁, then the likelihood-ratio test which rejects H₀ in favour of H₁ when 𝛬(x)=(L(𝜃₀∣x))/(L(𝜃₁∣x))≤𝜂 where P(𝛬(X)≤𝜂∣H_0)=𝛼 is the most powerful test of size α for a threshold η.
Neyman-Pearson lemma
When constructing tests for simple hypotheses, the Neyman-Pearson lemma shows that the likelihood-ratio test maximizes power among all tests with the same significance level.
When constructing tests for simple hypotheses, the Neyman-Pearson lemma shows that the likelihood-ratio test maximizes power among all tests with the same significance level.
English - English
- Users who have edit permission for words - All Users
- Screen new word creation
- Screen word edits
- Screen word deletion
- Screen the creation of new headword that may be duplicates
- Screen changing entry name
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1
- Users who have edit permission for sentences - All Users
- Screen sentence deletion
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1
- Users who have edit permission for quizzes - All Users
- Users authorized to vote on judging - Editor
- Number of votes required for decision - 1