Last Updated :2025/11/29

Lickorish-Wallace theorem

Proper noun
Japanese Meaning
(数学) 任意の閉じた向き付け可能な連結な3次元多様体は、3次元球面内に埋め込まれたフレーム付きリンクに対して±1のDehn手術を施すことで得られるという定理であり、その際、各リンクの構成要素は単結び(unknotted)であると仮定できる。
What is this buttons?

ゼミでは、任意の閉じた向きづけ可能な連結3次元多様体が、各成分が無結び目である3次元球中のフレームドリンクに対して±1の手術係数でデーン手術を行うことで得られるという定理とその応用について議論した。

Quizzes for review

(mathematics) The theorem that any closed, orientable, connected 3-manifold may be obtained by performing Dehn surgery on a framed link in the 3-sphere with ±1 surgery coefficients, and that each component of the link can be assumed to be unknotted.

音声機能が動作しない場合はこちらをご確認ください
See correct answer

Lickorish-Wallace theorem

In our seminar we discussed the Lickorish-Wallace theorem and how it allows constructing every closed, orientable, connected 3-manifold by ±1 Dehn surgery on a framed link whose components can be assumed unknotted in the 3-sphere.

See correct answer

In our seminar we discussed the Lickorish-Wallace theorem and how it allows constructing every closed, orientable, connected 3-manifold by ±1 Dehn surgery on a framed link whose components can be assumed unknotted in the 3-sphere.

音声機能が動作しない場合はこちらをご確認ください

English - English

Word Edit Setting
  • Users who have edit permission for words - All Users
  • Screen new word creation
  • Screen word edits
  • Screen word deletion
  • Screen the creation of new headword that may be duplicates
  • Screen changing entry name
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Sentence Edit Setting
  • Users who have edit permission for sentences - All Users
  • Screen sentence deletion
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Quiz Edit Setting
  • Users who have edit permission for quizzes - All Users
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Editing Guideline

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★