Last Updated:2025/08/30
Sentence

すべての有限可換群は巡回群の直和に同型である。

Every finite abelian group is isomorphic to a direct sum of cyclic groups.

What is this buttons?

Quizzes for review

Ogni gruppo abeliano finito è isomorfo a una somma diretta di gruppi ciclici.

See correct answer

すべての有限可換群は巡回群の直和に同型である。

すべての有限可換群は巡回群の直和に同型である。

See correct answer

Ogni gruppo abeliano finito è isomorfo a una somma diretta di gruppi ciclici.

Related words

gruppo abeliano

Noun
masculine

(数学)アーベル群

English Meaning
(mathematics) abelian group
What is this buttons?

すべての有限可換群は巡回群の直和に同型である。

Every finite abelian group is isomorphic to a direct sum of cyclic groups.

What is this buttons?
Related Words

plural

Italian - Japanese

Word Edit Setting
  • Users who have edit permission for words - All Users
  • Screen new word creation
  • Screen word edits
  • Screen word deletion
  • Screen the creation of new headword that may be duplicates
  • Screen changing entry name
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Sentence Edit Setting
  • Users who have edit permission for sentences - All Users
  • Screen sentence deletion
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Quiz Edit Setting
  • Users who have edit permission for quizzes - All Users
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Editing Guideline

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★