Last Updated:2025/12/07
Sentence

双曲四元数は、元が q = a + bi + cj + dk(a, b, c, d は実数)という形をとる実数上の非結合代数の元であり、その乗法は結合則を満たしません。

Quizzes for review

A hyperbolic quaternion can be written as q = a + bi + cj + dk with a, b, c, d ∈ R, and its multiplication is nonassociative.

See correct answer

A hyperbolic quaternion can be written as q = a + bi + cj + dk with a, b, c, d ∈ R, and its multiplication is nonassociative.

音声機能が動作しない場合はこちらをご確認ください

Related words

hyperbolic quaternion

Noun
abstract
Japanese Meaning
hyperbolic quaternion(双曲四元数)とは、実数上の非結合代数の一種であり、各元が q = a + bi + cj + dk の形で表され、ここで a, b, c, d は実数である。 / 数学、特に抽象代数学の分野で扱われる対象で、四元数の性質の変種として考えられる。
What is this buttons?

双曲四元数は、元が q = a + bi + cj + dk(a, b, c, d は実数)という形をとる実数上の非結合代数の元であり、その乗法は結合則を満たしません。

Related Words

plural

English - English

Word Edit Setting
  • Users who have edit permission for words - All Users
  • Screen new word creation
  • Screen word edits
  • Screen word deletion
  • Screen the creation of new headword that may be duplicates
  • Screen changing entry name
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Sentence Edit Setting
  • Users who have edit permission for sentences - All Users
  • Screen sentence deletion
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Quiz Edit Setting
  • Users who have edit permission for quizzes - All Users
  • Users authorized to vote on judging - Editor
  • Number of votes required for decision - 1
Editing Guideline

Login / Sign up

 

Download the app!
DiQt

DiQt

Free

★★★★★★★★★★